October  2016, 36(10): 5657-5679. doi: 10.3934/dcds.2016048

On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay

1. 

Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

Received  September 2015 Revised  February 2016 Published  July 2016

A transcendental equation $\lambda + \alpha - \beta\mathrm{e}^{-\lambda\tau} = 0$ with complex coefficients is investigated. This equation can be obtained from the characteristic equation of a linear differential equation with a single constant delay. It is known that the set of roots of this equation can be expressed by the Lambert W function. We analyze the condition on parameters for which all the roots have negative real parts by using the ``graph-like'' expression of the W function. We apply the obtained results to the stabilization of an unstable equilibrium solution by the delayed feedback control and the stability condition of the synchronous state in oscillator networks.
Citation: Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048
References:
[1]

K. L. Cooke and Z. Grossman, Discrete delay, distributed delay and stability switches,, J. Math. Anal. Appl., 86 (1982), 592. doi: 10.1016/0022-247X(82)90243-8. Google Scholar

[2]

R. M. Corless and D. J. Jeffrey, The Wright $\omega$ function,, Lecture Notes in Comput. Sci., 2385 (2002), 76. doi: 10.1007/3-540-45470-5_10. Google Scholar

[3]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function,, Adv. Comput. Math., 5 (1996), 329. doi: 10.1007/BF02124750. Google Scholar

[4]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay equations. Functional, Complex, and Nonlinear Analysis,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4206-2. Google Scholar

[5]

M. G. Earl and S. H. Strogatz, Synchronization in oscillator networks with delayed coupling: A stability criterion,, Phy. Rev. E, 67 (2003). doi: 10.1103/PhysRevE.67.036204. Google Scholar

[6]

B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Refuting the odd-number limitation of time-delayed feedback control,, Phys. Rev. Lett., 98 (2007). doi: 10.1103/PhysRevLett.98.114101. Google Scholar

[7]

N. D. Hayes, Roots of the transcendental equation associated with a certain differential-difference equation,, J. London Math. Soc., 25 (1950), 226. Google Scholar

[8]

R. A. Horn and C. R. Johnson, Matrix Analysis,, Cambridge University Press, (1985). doi: 10.1017/CBO9780511810817. Google Scholar

[9]

P. Hövel and E. Schöll, Control of unstable steady states by time-delayed feedback methods,, Phy. Rev. E, 72 (2005). Google Scholar

[10]

H. Kokame, K. Hirata, K. Konishi and T. Mori, State difference feedback for stabilizing uncertain steady states of non-linear systems,, Internat. J. Control, 74 (2001), 537. doi: 10.1080/00207170010017275. Google Scholar

[11]

H. Matsunaga, Delay-dependent and delay-independent stability criteria for a delay differential system,, Proc. Amer. Math. Soc., 136 (2008), 4305. doi: 10.1090/S0002-9939-08-09396-9. Google Scholar

[12]

K. Pyragas, Continuous control of chaos by self-controlling feedback,, Controlling chaos: Theoretical and practical methods in non-linear dynamics, (1996), 118. doi: 10.1016/B978-012396840-1/50038-2. Google Scholar

[13]

H. Shinozaki and T. Mori, Robust stability analysis of linear time-delay systems by Lambert $W$ function: Some extreme point results,, Automatica, 42 (2006), 1791. doi: 10.1016/j.automatica.2006.05.008. Google Scholar

[14]

G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions,, Longman Scientific & Technical, (1989). Google Scholar

[15]

J. Wei and C. Zhang, Stability analysis in a first-order complex differential equations with delay,, Nonlinear Anal., 59 (2004), 657. doi: 10.1016/j.na.2004.07.027. Google Scholar

[16]

E. M. Wright, Solution of the equation $z e^z = a$,, Bull. Amer. Math. Soc., 65 (1959), 89. doi: 10.1090/S0002-9904-1959-10290-1. Google Scholar

show all references

References:
[1]

K. L. Cooke and Z. Grossman, Discrete delay, distributed delay and stability switches,, J. Math. Anal. Appl., 86 (1982), 592. doi: 10.1016/0022-247X(82)90243-8. Google Scholar

[2]

R. M. Corless and D. J. Jeffrey, The Wright $\omega$ function,, Lecture Notes in Comput. Sci., 2385 (2002), 76. doi: 10.1007/3-540-45470-5_10. Google Scholar

[3]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function,, Adv. Comput. Math., 5 (1996), 329. doi: 10.1007/BF02124750. Google Scholar

[4]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay equations. Functional, Complex, and Nonlinear Analysis,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4206-2. Google Scholar

[5]

M. G. Earl and S. H. Strogatz, Synchronization in oscillator networks with delayed coupling: A stability criterion,, Phy. Rev. E, 67 (2003). doi: 10.1103/PhysRevE.67.036204. Google Scholar

[6]

B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Refuting the odd-number limitation of time-delayed feedback control,, Phys. Rev. Lett., 98 (2007). doi: 10.1103/PhysRevLett.98.114101. Google Scholar

[7]

N. D. Hayes, Roots of the transcendental equation associated with a certain differential-difference equation,, J. London Math. Soc., 25 (1950), 226. Google Scholar

[8]

R. A. Horn and C. R. Johnson, Matrix Analysis,, Cambridge University Press, (1985). doi: 10.1017/CBO9780511810817. Google Scholar

[9]

P. Hövel and E. Schöll, Control of unstable steady states by time-delayed feedback methods,, Phy. Rev. E, 72 (2005). Google Scholar

[10]

H. Kokame, K. Hirata, K. Konishi and T. Mori, State difference feedback for stabilizing uncertain steady states of non-linear systems,, Internat. J. Control, 74 (2001), 537. doi: 10.1080/00207170010017275. Google Scholar

[11]

H. Matsunaga, Delay-dependent and delay-independent stability criteria for a delay differential system,, Proc. Amer. Math. Soc., 136 (2008), 4305. doi: 10.1090/S0002-9939-08-09396-9. Google Scholar

[12]

K. Pyragas, Continuous control of chaos by self-controlling feedback,, Controlling chaos: Theoretical and practical methods in non-linear dynamics, (1996), 118. doi: 10.1016/B978-012396840-1/50038-2. Google Scholar

[13]

H. Shinozaki and T. Mori, Robust stability analysis of linear time-delay systems by Lambert $W$ function: Some extreme point results,, Automatica, 42 (2006), 1791. doi: 10.1016/j.automatica.2006.05.008. Google Scholar

[14]

G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions,, Longman Scientific & Technical, (1989). Google Scholar

[15]

J. Wei and C. Zhang, Stability analysis in a first-order complex differential equations with delay,, Nonlinear Anal., 59 (2004), 657. doi: 10.1016/j.na.2004.07.027. Google Scholar

[16]

E. M. Wright, Solution of the equation $z e^z = a$,, Bull. Amer. Math. Soc., 65 (1959), 89. doi: 10.1090/S0002-9904-1959-10290-1. Google Scholar

[1]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[2]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[3]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[4]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[5]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[6]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[7]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[8]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[9]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[10]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[11]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[12]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[13]

Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233

[14]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[15]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[16]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[17]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[18]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

[19]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[20]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]