Advanced Search
Article Contents
Article Contents

Matsaev's type theorems for solutions of the stationary Schrödinger equation and its applications

Abstract Related Papers Cited by
  • Our aim in this paper is to give lower estimates for solutions of the stationary Schrödinger equation in a cone, which generalize and supplement the result obtained by Matsaev's type theorems for harmonic functions in a half space. Meanwhile, some applications of this conclusion are also given.
    Mathematics Subject Classification: Primary: 35J05, 35J10; Secondary: 35C15.


    \begin{equation} \\ \end{equation}
  • [1]

    V. S. Azarin, Generalization of a theorem of Hayman's on a subharmonic function in an $n$-dimensional cone (Russian), Mat. Sb. (N.S.), 108 (1965), 248-264.


    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.


    N. V. Govorov and M. I. Zhuravleva, On an upper bound of the module of a function analytic in a half-plane and in a plane with a cut (Russian), Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Estestv. Nauk., 4 (1973), 102-103.


    P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964.


    A. I. Kheyfits, Growth of Schrödingerian subharmonic functions admitting certain lower bounds, Advances in Harmonic Analysis and Operator Theory, Oper. Theory, Adv. Appl., 229 (2013), 215-231.doi: 10.1007/978-3-0348-0516-2_12.


    I. F. Krasičkov-Ternovskiĭ, Estimates for the subharmonic difference of subharmonic functions. II, Math. USSR-Sb., 32 (1977), 32-59.


    B. Ya. Levin, Lectures on Entire Functions, Translations of Mathematical Monographs, vol. 150, American Mathematical Society, Providence, RI, 1996.


    B. Ya. Levin and A. I. Kheyfits, Asymptotic behavior of subfunctions of time-independent Schrödinger operator, in Some Topics on Value Distribution and Differentiability in Complex and P-adic Analysis (eds. A. Escassut, W. Tutschke and C. C. Yang), Science Press, 11 (2008), 323-397.


    N. K. Nikol'skiĭ, Selected Problems of the Weighted Approximation and Spectral Analysis, American Mathematical Society, Providence, R.I., 1976.


    L. Qiao, Integral representations for harmonic functions of infinite order in a cone, Results Math., 61 (2012), 63-74.doi: 10.1007/s00025-010-0076-7.


    L. Qiao and G. Deng, A theorem of Phragmén-Lindelöf type for subfunctions in a cone, Glasg. Math. J., 53 (2011), 599-610.doi: 10.1017/S0017089511000164.


    L. Qiao and G. Pan, Integral representations of generalized harmonic functions, Taiwanese J. Math., 17 (2013), 1503-1521.


    L. Qiao and G. Pan, Lower-bound estimates for a class of harmonic functions and applications to Masaev's Type theorem, Bull. Sci. Math., 140 (2016), 70-85.doi: 10.1016/j.bulsci.2015.02.005.


    L. Qiao and Y. Ren, Integral representations for the solutions of infinite order of the stationary Schrödinger equation in a cone, Monats. Math., 173 (2014), 593-603.doi: 10.1007/s00605-013-0506-1.


    A. Yu. Rashkovskiĭ and L. I. Ronkin, Subharmonic functions of finite order in a cone. I. General theory, (Russian) Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., 54 (1990), 74-89.doi: 10.1007/BF01097287.


    B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447-526.doi: 10.1090/S0273-0979-1982-15041-8.


    G. M. Verzhbinskiĭ and V. G. Maz'ya, Asymptotic behavior of the solutions of second order elliptic equations near the boundary. I. (Russian), Sibirsk. Mat. Ž., 12 (1971), 1217-1249.


    Y. Zhang, G. Deng and K. Kou, On the lower bound for a class of harmonic functions in the half space, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 1487-1494.doi: 10.1016/S0252-9602(12)60117-9.

  • 加载中

Article Metrics

HTML views() PDF downloads(182) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint