• Previous Article
    The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension
  • DCDS Home
  • This Issue
  • Next Article
    Matsaev's type theorems for solutions of the stationary Schrödinger equation and its applications
October  2016, 36(10): 5721-5741. doi: 10.3934/dcds.2016051

Solitary waves for an internal wave model

1. 

Departamento de Matemáticas, Universidad del Valle, Calle 13 Nro. 100-00, Cali, Colombia, Colombia

Received  August 2015 Revised  April 2016 Published  July 2016

We show the existence of solitary wave solutions of finite energy for a model to describe the propagation of internal waves for wave speed $c$ large enough. Furthermore, some of these solutions are approximated using a Newton-type iteration combined with a collocation-spectral strategy for spatial discretization of the corresponding solitary wave equations.
Citation: José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051
References:
[1]

J. Angulo, M. Scialom and C. Banquet, The regularized Benjamin-Ono and BBM equations: Well possedness and nonlinear stability,, J. Diff. Eq., 250 (2011), 4011.  doi: 10.1016/j.jde.2010.12.016.  Google Scholar

[2]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth,, J. Fluid Mech., 29 (1967), 559.  doi: 10.1017/S002211206700103X.  Google Scholar

[3]

T. B. Benjamin, J. L. Bona and D. K. Bose, Solitary-wave solutions of nonlinear problems,, Phil. Trans. R. Soc. Lond. A, 331 (1990), 195.  doi: 10.1098/rsta.1990.0065.  Google Scholar

[4]

D. J. Benney and J. C. Luke, Interactions of permanent waves of finite amplitude,, J. Math. Phys., 43 (1964), 309.  doi: 10.1002/sapm1964431309.  Google Scholar

[5]

R. Camassa and D. Holm, An integrable shallow water with peaked solitons,, Phys. Rev. Lett. , 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[6]

H. Chen, Existence of periodic travelling-wave solutions of nonlinear, dispersive wave equations,, Nonlinearity, 17 (2004), 2041.  doi: 10.1088/0951-7715/17/6/003.  Google Scholar

[7]

H. Chen, M. Chen and V. Nguyen, Cnoidal wave solutions to Boussinesq systems,, Nonlinearity, 20 (2007), 1443.  doi: 10.1088/0951-7715/20/6/007.  Google Scholar

[8]

J. Conway, Functions of one Complex Variable,, 2ed., (1978).   Google Scholar

[9]

A. Degasperis and M. Procesi, Asymptotic integrability,, in symmetry and Perturbation Theory(A. Degasperis and G. Gaeta, (1999), 23.   Google Scholar

[10]

J. Duoandikoetxea, Fourier Analysis,, Graduate Studies in Mathematics, (2001).   Google Scholar

[11]

A. Granas, The Leray-Schauder index and fixed point theory for arbitrary ANRs,, Bull. Soc. Math. Fr., 100 (1972), 209.   Google Scholar

[12]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,, Phil. Mag., 39 (1895), 422.  doi: 10.1080/14786449508620739.  Google Scholar

[13]

M. A. Krasnosel'skii, Positive Solutions of Operators Equations,, ed. L.F. Boron: P. Noordhoff Ltd., (1964).   Google Scholar

[14]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations,, ed. J. Burlak, (1964).   Google Scholar

[15]

Z. Linghai, Decay of solutions of generalized Benjamin-Bona-Mahony equations,, Acta Mathematica Sinica, 10 (1994), 428.  doi: 10.1007/BF02582039.  Google Scholar

[16]

J. C. Muñoz Grajales, Existence and numerical approximation of solutions of an improved internal wave model,, Math. Model. Anal. 19 (2014), 19 (2014), 309.  doi: 10.3846/13926292.2014.924039.  Google Scholar

[17]

F. Pipicano and J. C. Muñoz Grajales, Existence of periodic travelling wave solutions for a regularized Benjamin-Ono system,, J. Diff. Eq. 259 (2015), 259 (2015), 7503.  doi: 10.1016/j.jde.2015.08.030.  Google Scholar

[18]

J. Quintero and R. Pego, Two-dimensional solitary waves for a Benney-luke equation,, Physica D, 132 (1999), 476.  doi: 10.1016/S0167-2789(99)00058-5.  Google Scholar

[19]

W. Rudin, Functional Analysis,, McGraw-Hill, (1973).   Google Scholar

[20]

The Bateman Manuscript Project, California Institute of Technology,, Ed. A. Erdeélyi, (1954).   Google Scholar

show all references

References:
[1]

J. Angulo, M. Scialom and C. Banquet, The regularized Benjamin-Ono and BBM equations: Well possedness and nonlinear stability,, J. Diff. Eq., 250 (2011), 4011.  doi: 10.1016/j.jde.2010.12.016.  Google Scholar

[2]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth,, J. Fluid Mech., 29 (1967), 559.  doi: 10.1017/S002211206700103X.  Google Scholar

[3]

T. B. Benjamin, J. L. Bona and D. K. Bose, Solitary-wave solutions of nonlinear problems,, Phil. Trans. R. Soc. Lond. A, 331 (1990), 195.  doi: 10.1098/rsta.1990.0065.  Google Scholar

[4]

D. J. Benney and J. C. Luke, Interactions of permanent waves of finite amplitude,, J. Math. Phys., 43 (1964), 309.  doi: 10.1002/sapm1964431309.  Google Scholar

[5]

R. Camassa and D. Holm, An integrable shallow water with peaked solitons,, Phys. Rev. Lett. , 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[6]

H. Chen, Existence of periodic travelling-wave solutions of nonlinear, dispersive wave equations,, Nonlinearity, 17 (2004), 2041.  doi: 10.1088/0951-7715/17/6/003.  Google Scholar

[7]

H. Chen, M. Chen and V. Nguyen, Cnoidal wave solutions to Boussinesq systems,, Nonlinearity, 20 (2007), 1443.  doi: 10.1088/0951-7715/20/6/007.  Google Scholar

[8]

J. Conway, Functions of one Complex Variable,, 2ed., (1978).   Google Scholar

[9]

A. Degasperis and M. Procesi, Asymptotic integrability,, in symmetry and Perturbation Theory(A. Degasperis and G. Gaeta, (1999), 23.   Google Scholar

[10]

J. Duoandikoetxea, Fourier Analysis,, Graduate Studies in Mathematics, (2001).   Google Scholar

[11]

A. Granas, The Leray-Schauder index and fixed point theory for arbitrary ANRs,, Bull. Soc. Math. Fr., 100 (1972), 209.   Google Scholar

[12]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,, Phil. Mag., 39 (1895), 422.  doi: 10.1080/14786449508620739.  Google Scholar

[13]

M. A. Krasnosel'skii, Positive Solutions of Operators Equations,, ed. L.F. Boron: P. Noordhoff Ltd., (1964).   Google Scholar

[14]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations,, ed. J. Burlak, (1964).   Google Scholar

[15]

Z. Linghai, Decay of solutions of generalized Benjamin-Bona-Mahony equations,, Acta Mathematica Sinica, 10 (1994), 428.  doi: 10.1007/BF02582039.  Google Scholar

[16]

J. C. Muñoz Grajales, Existence and numerical approximation of solutions of an improved internal wave model,, Math. Model. Anal. 19 (2014), 19 (2014), 309.  doi: 10.3846/13926292.2014.924039.  Google Scholar

[17]

F. Pipicano and J. C. Muñoz Grajales, Existence of periodic travelling wave solutions for a regularized Benjamin-Ono system,, J. Diff. Eq. 259 (2015), 259 (2015), 7503.  doi: 10.1016/j.jde.2015.08.030.  Google Scholar

[18]

J. Quintero and R. Pego, Two-dimensional solitary waves for a Benney-luke equation,, Physica D, 132 (1999), 476.  doi: 10.1016/S0167-2789(99)00058-5.  Google Scholar

[19]

W. Rudin, Functional Analysis,, McGraw-Hill, (1973).   Google Scholar

[20]

The Bateman Manuscript Project, California Institute of Technology,, Ed. A. Erdeélyi, (1954).   Google Scholar

[1]

Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391

[2]

Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067

[3]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[4]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[5]

Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77

[6]

Xiaowan Li, Zengji Du, Shuguan Ji. Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2961-2981. doi: 10.3934/cpaa.2019132

[7]

Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483

[8]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[9]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[10]

Youcef Mammeri. On the decay in time of solutions of some generalized regularized long waves equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 513-532. doi: 10.3934/cpaa.2008.7.513

[11]

Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065

[12]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[13]

Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793

[14]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[15]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[16]

Cheng Hou Tsang, Boris A. Malomed, Kwok Wing Chow. Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1299-1325. doi: 10.3934/dcdss.2011.4.1299

[17]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[18]

Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623

[19]

Jibin Li. Family of nonlinear wave equations which yield loop solutions and solitary wave solutions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 897-907. doi: 10.3934/dcds.2009.24.897

[20]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

[Back to Top]