October  2016, 36(10): 5801-5815. doi: 10.3934/dcds.2016055

On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations

1. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106

2. 

Department of Mathematics, Nanjing University, Nanjing 210093

Received  September 2015 Revised  April 2016 Published  July 2016

The present paper is devoted to the well-posedness issue of solutions to the $3$-$D$ incompressible magnetohydrodynamic(MHD) equations with horizontal dissipation and horizontal magnetic diffusion. By means of anisotropic Littlewood-Paley analysis we prove the global well-posedness of solutions in the anisotropic Sobolev spaces of type $H^{0,s_0}(\mathbb{R}^3)$ with $s_0>\frac1{2}$ provided the norm of initial data is small enough in the sense that \begin{align*} (\|u_n^h(0)\|_{H^{0,s_0}}^2+\|B_n^h(0)\|_{H^{0,s_0}}^2)\exp \Big\{C_1(\|u_0^3\|_{H^{0,s_0}}^4+\|B_0^3\|_{H^{0,s_0}}^4)\Big\}\leq\varepsilon_0, \end{align*} for some sufficiently small constant $\varepsilon_0.$
Citation: Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5801-5815. doi: 10.3934/dcds.2016055
References:
[1]

H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

C. Cao, D. Regmi and J. Wu, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion,, J. Differ. Equ., 254 (2013), 2661.  doi: 10.1016/j.jde.2013.01.002.  Google Scholar

[3]

J. Chemin, Localization in Fourier space and Navier-Stokes system Phase space analysis of Partial Differential Equations,, Pubbl. Cert. Ric. Mat. Ennio de Gorg Scuola Norma. Sup. Pisa, I (2004), 53.   Google Scholar

[4]

J. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity,, Math. Model. Numer. Anal., 34 (2000), 315.  doi: 10.1051/m2an:2000143.  Google Scholar

[5]

J. Chemin, D. McCormick, J. Robinson and J. Rodrigo, Local existence for the non-resistive MHD equations in Besov spaces,, Adv. Math., 286 (2016), 1.  doi: 10.1016/j.aim.2015.09.004.  Google Scholar

[6]

Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda Criterion for the 3D Magneto-Hydrodynamics Equations,, Comm. Math. Phys., 275 (2007), 861.  doi: 10.1007/s00220-007-0319-y.  Google Scholar

[7]

Q. Chen, C. Miao and Z. Zhang, On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations,, Comm. Math. Phys., 284 (2008), 919.  doi: 10.1007/s00220-008-0545-y.  Google Scholar

[8]

J. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations,, Comm. Math. Phys., 272 (2007), 529.  doi: 10.1007/s00220-007-0236-0.  Google Scholar

[9]

G. Gui and P. Zhang, Stability to the global large solutions of 3-D Navier-Stokes equations,, Adv. Math., 225 (2010), 1248.  doi: 10.1016/j.aim.2010.03.022.  Google Scholar

[10]

D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces,, Rev. Mat. Iberoamericana, 15 (1999), 1.  doi: 10.4171/RMI/248.  Google Scholar

[11]

Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity,, Discrete Contin. Dyn. Syst., 25 (2009), 575.  doi: 10.3934/dcds.2009.25.575.  Google Scholar

[12]

F. Lin, L. Xu and P. Zhang, Global small solutions of 2-D incompressible MHD system,, J. Differ. Equ., 259 (2015), 5440.  doi: 10.1016/j.jde.2015.06.034.  Google Scholar

[13]

F. Lin and P. Zhang, Global small solutions to an MHD-type system: The three-dimensional case,, Comm. Pure Appl. Math., 67 (2014), 531.  doi: 10.1002/cpa.21506.  Google Scholar

[14]

M. Paicu, Équation anisotrope de Navier-Stokes dans des espaces critiques,, Rev. Mat. Iberoamericana, 21 (2005), 179.  doi: 10.4171/RMI/420.  Google Scholar

[15]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Comm. Math. Phys., 307 (2011), 713.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[16]

X. Ren, J. Wu, Z. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion,, J. Funct. Anal., 267 (2014), 503.  doi: 10.1016/j.jfa.2014.04.020.  Google Scholar

[17]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[18]

J. Wu, Bounds and new approaches for the 3D MHD equations,, J. Nonlinear Science, 12 (2002), 395.  doi: 10.1007/s00332-002-0486-0.  Google Scholar

[19]

J. Wu, Regularity criteria for the generalized MHD equations,, Commun. Partial Diff. Equ., 33 (2008), 285.  doi: 10.1080/03605300701382530.  Google Scholar

[20]

J. Wu, Y. Wu and X. Xu, Global small solution to the 2D MHD system with a velocity damping term,, SIAM J. Math. Anal., 47 (2015), 2630.  doi: 10.1137/140985445.  Google Scholar

[21]

L. Xu and P. Zhang, Global small solutions to three-dimensional incompressible magnetohydrodynamical system,, SIAM J. Math. Anal., 47 (2015), 26.  doi: 10.1137/14095515X.  Google Scholar

[22]

T. Zhang, Erratum to: Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space,, Comm. Math. Phys., 295 (2010), 877.  doi: 10.1007/s00220-010-1004-0.  Google Scholar

show all references

References:
[1]

H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

C. Cao, D. Regmi and J. Wu, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion,, J. Differ. Equ., 254 (2013), 2661.  doi: 10.1016/j.jde.2013.01.002.  Google Scholar

[3]

J. Chemin, Localization in Fourier space and Navier-Stokes system Phase space analysis of Partial Differential Equations,, Pubbl. Cert. Ric. Mat. Ennio de Gorg Scuola Norma. Sup. Pisa, I (2004), 53.   Google Scholar

[4]

J. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity,, Math. Model. Numer. Anal., 34 (2000), 315.  doi: 10.1051/m2an:2000143.  Google Scholar

[5]

J. Chemin, D. McCormick, J. Robinson and J. Rodrigo, Local existence for the non-resistive MHD equations in Besov spaces,, Adv. Math., 286 (2016), 1.  doi: 10.1016/j.aim.2015.09.004.  Google Scholar

[6]

Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda Criterion for the 3D Magneto-Hydrodynamics Equations,, Comm. Math. Phys., 275 (2007), 861.  doi: 10.1007/s00220-007-0319-y.  Google Scholar

[7]

Q. Chen, C. Miao and Z. Zhang, On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations,, Comm. Math. Phys., 284 (2008), 919.  doi: 10.1007/s00220-008-0545-y.  Google Scholar

[8]

J. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations,, Comm. Math. Phys., 272 (2007), 529.  doi: 10.1007/s00220-007-0236-0.  Google Scholar

[9]

G. Gui and P. Zhang, Stability to the global large solutions of 3-D Navier-Stokes equations,, Adv. Math., 225 (2010), 1248.  doi: 10.1016/j.aim.2010.03.022.  Google Scholar

[10]

D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces,, Rev. Mat. Iberoamericana, 15 (1999), 1.  doi: 10.4171/RMI/248.  Google Scholar

[11]

Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity,, Discrete Contin. Dyn. Syst., 25 (2009), 575.  doi: 10.3934/dcds.2009.25.575.  Google Scholar

[12]

F. Lin, L. Xu and P. Zhang, Global small solutions of 2-D incompressible MHD system,, J. Differ. Equ., 259 (2015), 5440.  doi: 10.1016/j.jde.2015.06.034.  Google Scholar

[13]

F. Lin and P. Zhang, Global small solutions to an MHD-type system: The three-dimensional case,, Comm. Pure Appl. Math., 67 (2014), 531.  doi: 10.1002/cpa.21506.  Google Scholar

[14]

M. Paicu, Équation anisotrope de Navier-Stokes dans des espaces critiques,, Rev. Mat. Iberoamericana, 21 (2005), 179.  doi: 10.4171/RMI/420.  Google Scholar

[15]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Comm. Math. Phys., 307 (2011), 713.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[16]

X. Ren, J. Wu, Z. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion,, J. Funct. Anal., 267 (2014), 503.  doi: 10.1016/j.jfa.2014.04.020.  Google Scholar

[17]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[18]

J. Wu, Bounds and new approaches for the 3D MHD equations,, J. Nonlinear Science, 12 (2002), 395.  doi: 10.1007/s00332-002-0486-0.  Google Scholar

[19]

J. Wu, Regularity criteria for the generalized MHD equations,, Commun. Partial Diff. Equ., 33 (2008), 285.  doi: 10.1080/03605300701382530.  Google Scholar

[20]

J. Wu, Y. Wu and X. Xu, Global small solution to the 2D MHD system with a velocity damping term,, SIAM J. Math. Anal., 47 (2015), 2630.  doi: 10.1137/140985445.  Google Scholar

[21]

L. Xu and P. Zhang, Global small solutions to three-dimensional incompressible magnetohydrodynamical system,, SIAM J. Math. Anal., 47 (2015), 26.  doi: 10.1137/14095515X.  Google Scholar

[22]

T. Zhang, Erratum to: Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space,, Comm. Math. Phys., 295 (2010), 877.  doi: 10.1007/s00220-010-1004-0.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[7]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[10]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[11]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[14]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[15]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[18]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[19]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]