November  2016, 36(11): 5837-5879. doi: 10.3934/dcds.2016057

Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes

1. 

Dipartimento di Scienze Matematiche, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino

2. 

Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via R. Cozzi 53, 20125 Milano

3. 

PriceWaterhouseCoopers Italia, Via Monte Rosa 91, 21049, Milano, Italy

Received  September 2015 Revised  May 2016 Published  August 2016

In this paper the study of asymptotic stability of standing waves for a model of Schrödinger equation with spatially concentrated nonlinearity in dimension three. The nonlinearity studied is a power nonlinearity concentrated at the point $x=0$ obtained considering a contact (or $\delta$) interaction with strength $\alpha$, which consists of a singular perturbation of the Laplacian described by a selfadjoint operator $H_{\alpha}$, and letting the strength $\alpha$ depend on the wavefunction in a prescribed way: $i\dot u= H_\alpha u$, $\alpha=\alpha(u)$. For power nonlinearities in the range $(\frac{1}{\sqrt 2},1)$ there exist orbitally stable standing waves $\Phi_\omega$, and the linearization around them admits two imaginary eigenvalues (neutral modes, absent in the range $(0,\frac{1}{\sqrt 2})$ previously treated by the same authors) which in principle could correspond to non decaying states, so preventing asymptotic relaxation towards an equilibrium orbit. We prove that, in the range $(\frac{1}{\sqrt 2},\sigma^*)$ for a certain $\sigma^* \in (\frac{1}{\sqrt{2}}, \frac{\sqrt{3} +1}{2 \sqrt{2}}]$, the dynamics near the orbit of a standing wave asymptotically relaxes in the following sense: consider an initial datum $u(0)$, suitably near the standing wave $\Phi_{\omega_0}, $ then the solution $u(t)$ can be asymptotically decomposed as $$u(t) = e^{i\omega_{\infty} t +i b_1 \log (1 +\epsilon k_{\infty} t) + i \gamma_\infty} \Phi_{\omega_{\infty}} +U_t*\psi_{\infty} +r_{\infty}, \quad \textrm{as} \;\; t \rightarrow +\infty,$$ where $\omega_{\infty}$, $k_{\infty}, \gamma_\infty > 0$, $b_1 \in \mathbb{R}$, and $\psi_{\infty}$ and $r_{\infty} \in L^2(\mathbb{R}^3)$ , $U(t)$ is the free Schrödinger group and $$\| r_{\infty} \|_{L^2} = O(t^{-1/4}) \quad \textrm{as} \;\; t \rightarrow +\infty\ .$$ We stress the fact that in the present case and contrarily to the main results in the field, the admitted nonlinearity is $L^2$-subcritical.
Citation: Riccardo Adami, Diego Noja, Cecilia Ortoleva. Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5837-5879. doi: 10.3934/dcds.2016057
References:
[1]

R. Adami, G. Dell'Antonio, R. Figari and A. Teta, The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity,, Ann. I. H. Poincaré, 20 (2003), 477.  doi: 10.1016/S0294-1449(02)00022-7.  Google Scholar

[2]

R. Adami, G. Dell'Antonio, R. Figari and A. Teta, Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity,, Ann. I. H. Poincaré, 21 (2004), 121.  doi: 10.1016/j.anihpc.2003.01.002.  Google Scholar

[3]

R. Adami, D. Noja, Stability and Symmetry-Breaking Bifurcation for the Ground States of a NLS with a $\delta'$ Interaction,, Commun. Math. Phys., 318 (2013), 247.  doi: 10.1007/s00220-012-1597-6.  Google Scholar

[4]

R. Adami, D. Noja and C. Ortoleva, Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three,, J. Math. Phys., 54 (2013).  doi: 10.1063/1.4772490.  Google Scholar

[5]

R. Adami, D. Noja, N. Visciglia, Constrained energy minimization and ground states for NLS with point defects,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1155.  doi: 10.3934/dcdsb.2013.18.1155.  Google Scholar

[6]

S. Albeverio, F. Gesztesy, R. Högh-Krohn and H. Holden, Solvable Models in Quantum Mechanics,, American Mathematical Society, (2005).   Google Scholar

[7]

D. Bambusi, Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry,, Comm. Math. Phys. 320 (2013), 320 (2013), 499.  doi: 10.1007/s00220-013-1684-3.  Google Scholar

[8]

V. S. Buslaev, A. I. Komech, A.E. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator,, Comm. PDE, 33 (2008), 669.  doi: 10.1080/03605300801970937.  Google Scholar

[9]

V. S. Buslaev and G. Perelman, Scattering for the nonlinear Schrödinger equation: states close to a soliton,, St.Petersbourg Math J., 4 (1993), 1111.   Google Scholar

[10]

V. S. Buslaev and G. Perelman, On the stability of solitary waves for nonlinear Schrödinger equations,, Amer.Math.Soc.Transl., 164 (1995), 75.  doi: 10.1090/trans2/164/04.  Google Scholar

[11]

V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equation,, Ann. I. H. Poincaré, 20 (2003), 419.  doi: 10.1016/S0294-1449(02)00018-5.  Google Scholar

[12]

C.Cacciapuoti, D.Finco, D.Noja and A.Teta, The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit,, Lett. Math. Phys., 104 (2014), 1557.  doi: 10.1007/s11005-014-0725-y.  Google Scholar

[13]

C. Cacciapuoti, D.Finco, D.Noja and A.Teta, The point-like limit for a NLS Equation with concentrated nonlinearity in dimension three,, , (2015).   Google Scholar

[14]

S. Cuccagna, Stabilization of solution to nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 54 (2001), 1110.  doi: 10.1002/cpa.1018.  Google Scholar

[15]

S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations,, Comm. Math. Phys., 284 (2008), 51.  doi: 10.1007/s00220-008-0605-3.  Google Scholar

[16]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states,, Comm. Math. Phys., 305 (2011), 279.  doi: 10.1007/s00220-011-1265-2.  Google Scholar

[17]

Z. Gang and I. M. Sigal, Relaxation of solitons in nonlinear Schrödinger equations with potentials,, Adv. Math., 216 (2007), 443.  doi: 10.1016/j.aim.2007.04.018.  Google Scholar

[18]

Z. Gang and M. Weinstein, Dynamics of nonlinear Schrödinger-Gross-Pitaevskii equations; mass transfer in systems with solitons and degenerates neutral modes,, Analysis & PDE, 1 (2008), 267.  doi: 10.2140/apde.2008.1.267.  Google Scholar

[19]

Z. Gang and M. Weinstein, Equipartition of energy in Nonlinear Schrödinger-Gross-Pitaevskii equations,, AMRX, 2 (2011), 123.   Google Scholar

[20]

I. S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products,, Vth edition, (1994).   Google Scholar

[21]

E. Kirr and Ö. Mizrak, Asymptotic stability of ground states in 3d nonlinear Schrödinger equation including subcritical cases,, J. Funct. Anal., 257 (2009), 3691.  doi: 10.1016/j.jfa.2009.08.010.  Google Scholar

[22]

A. I. Komech, E. A. Kopylova and D. Stuart, On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator, II,, Comm. Pure Appl. Anal., 202 (2012), 1063.   Google Scholar

[23]

D. Noja and A. Posilicano, Wave equations with concentrated nonlinearities,, J. Phys. A: Math. Gen., 38 (2005), 5011.  doi: 10.1088/0305-4470/38/22/022.  Google Scholar

[24]

I.M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions,, Commun. Math. Phys., 2 (1993), 297.   Google Scholar

[25]

A. Soffer and M. Weinstein, Multichannel nonlinear scattering for nonintegrable equations,, Comm. Math. Phys., 133 (1990), 119.  doi: 10.1007/BF02096557.  Google Scholar

[26]

A. Soffer and M. Weinstein, Multichannel nonlinear scattering for nonintegrable equations II, the case of anisotropic potentials and data,, J. Diff. Eq., 98 (1992), 376.  doi: 10.1016/0022-0396(92)90098-8.  Google Scholar

[27]

A. Soffer and M. Weinstein, Resonances, radiation damping, and instability of Hamiltonian nonlinear waves,, Invent. Math., 136 (1999), 9.  doi: 10.1007/s002220050303.  Google Scholar

[28]

A. Soffer and M. Weinstein, Selection of the ground state for nonlinear Schrödinger equations,, Rev. Math. Phys., 16 (2004), 977.  doi: 10.1142/S0129055X04002175.  Google Scholar

[29]

A. Soffer and M. Weinstein, Theory of nonlinear dispersive waves and selection of the ground state,, Phys. Rev. Lett., 95 (2005).  doi: 10.1103/PhysRevLett.95.213905.  Google Scholar

[30]

T. P. Tsai and H. T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions,, Comm. Pure. Appl. Math, 55 (2002), 153.  doi: 10.1002/cpa.3012.  Google Scholar

[31]

T. P. Tsai and H. T. Yau, Relaxation of excited states in nonlinear Schrödinger equations,, Int. Math. Res. Not., 31 (2002), 1629.  doi: 10.1155/S1073792802201063.  Google Scholar

[32]

M. Weinstein, Localized states and Dynamics in the Nonlinear Schrödinger/Gross-Pitaevskii equation,, Frontiers in Applied Dynamical Systems, 3 (2015), 41.  doi: 10.1007/978-3-319-19935-1_2.  Google Scholar

show all references

References:
[1]

R. Adami, G. Dell'Antonio, R. Figari and A. Teta, The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity,, Ann. I. H. Poincaré, 20 (2003), 477.  doi: 10.1016/S0294-1449(02)00022-7.  Google Scholar

[2]

R. Adami, G. Dell'Antonio, R. Figari and A. Teta, Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity,, Ann. I. H. Poincaré, 21 (2004), 121.  doi: 10.1016/j.anihpc.2003.01.002.  Google Scholar

[3]

R. Adami, D. Noja, Stability and Symmetry-Breaking Bifurcation for the Ground States of a NLS with a $\delta'$ Interaction,, Commun. Math. Phys., 318 (2013), 247.  doi: 10.1007/s00220-012-1597-6.  Google Scholar

[4]

R. Adami, D. Noja and C. Ortoleva, Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three,, J. Math. Phys., 54 (2013).  doi: 10.1063/1.4772490.  Google Scholar

[5]

R. Adami, D. Noja, N. Visciglia, Constrained energy minimization and ground states for NLS with point defects,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1155.  doi: 10.3934/dcdsb.2013.18.1155.  Google Scholar

[6]

S. Albeverio, F. Gesztesy, R. Högh-Krohn and H. Holden, Solvable Models in Quantum Mechanics,, American Mathematical Society, (2005).   Google Scholar

[7]

D. Bambusi, Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry,, Comm. Math. Phys. 320 (2013), 320 (2013), 499.  doi: 10.1007/s00220-013-1684-3.  Google Scholar

[8]

V. S. Buslaev, A. I. Komech, A.E. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator,, Comm. PDE, 33 (2008), 669.  doi: 10.1080/03605300801970937.  Google Scholar

[9]

V. S. Buslaev and G. Perelman, Scattering for the nonlinear Schrödinger equation: states close to a soliton,, St.Petersbourg Math J., 4 (1993), 1111.   Google Scholar

[10]

V. S. Buslaev and G. Perelman, On the stability of solitary waves for nonlinear Schrödinger equations,, Amer.Math.Soc.Transl., 164 (1995), 75.  doi: 10.1090/trans2/164/04.  Google Scholar

[11]

V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equation,, Ann. I. H. Poincaré, 20 (2003), 419.  doi: 10.1016/S0294-1449(02)00018-5.  Google Scholar

[12]

C.Cacciapuoti, D.Finco, D.Noja and A.Teta, The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit,, Lett. Math. Phys., 104 (2014), 1557.  doi: 10.1007/s11005-014-0725-y.  Google Scholar

[13]

C. Cacciapuoti, D.Finco, D.Noja and A.Teta, The point-like limit for a NLS Equation with concentrated nonlinearity in dimension three,, , (2015).   Google Scholar

[14]

S. Cuccagna, Stabilization of solution to nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 54 (2001), 1110.  doi: 10.1002/cpa.1018.  Google Scholar

[15]

S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations,, Comm. Math. Phys., 284 (2008), 51.  doi: 10.1007/s00220-008-0605-3.  Google Scholar

[16]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states,, Comm. Math. Phys., 305 (2011), 279.  doi: 10.1007/s00220-011-1265-2.  Google Scholar

[17]

Z. Gang and I. M. Sigal, Relaxation of solitons in nonlinear Schrödinger equations with potentials,, Adv. Math., 216 (2007), 443.  doi: 10.1016/j.aim.2007.04.018.  Google Scholar

[18]

Z. Gang and M. Weinstein, Dynamics of nonlinear Schrödinger-Gross-Pitaevskii equations; mass transfer in systems with solitons and degenerates neutral modes,, Analysis & PDE, 1 (2008), 267.  doi: 10.2140/apde.2008.1.267.  Google Scholar

[19]

Z. Gang and M. Weinstein, Equipartition of energy in Nonlinear Schrödinger-Gross-Pitaevskii equations,, AMRX, 2 (2011), 123.   Google Scholar

[20]

I. S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products,, Vth edition, (1994).   Google Scholar

[21]

E. Kirr and Ö. Mizrak, Asymptotic stability of ground states in 3d nonlinear Schrödinger equation including subcritical cases,, J. Funct. Anal., 257 (2009), 3691.  doi: 10.1016/j.jfa.2009.08.010.  Google Scholar

[22]

A. I. Komech, E. A. Kopylova and D. Stuart, On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator, II,, Comm. Pure Appl. Anal., 202 (2012), 1063.   Google Scholar

[23]

D. Noja and A. Posilicano, Wave equations with concentrated nonlinearities,, J. Phys. A: Math. Gen., 38 (2005), 5011.  doi: 10.1088/0305-4470/38/22/022.  Google Scholar

[24]

I.M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions,, Commun. Math. Phys., 2 (1993), 297.   Google Scholar

[25]

A. Soffer and M. Weinstein, Multichannel nonlinear scattering for nonintegrable equations,, Comm. Math. Phys., 133 (1990), 119.  doi: 10.1007/BF02096557.  Google Scholar

[26]

A. Soffer and M. Weinstein, Multichannel nonlinear scattering for nonintegrable equations II, the case of anisotropic potentials and data,, J. Diff. Eq., 98 (1992), 376.  doi: 10.1016/0022-0396(92)90098-8.  Google Scholar

[27]

A. Soffer and M. Weinstein, Resonances, radiation damping, and instability of Hamiltonian nonlinear waves,, Invent. Math., 136 (1999), 9.  doi: 10.1007/s002220050303.  Google Scholar

[28]

A. Soffer and M. Weinstein, Selection of the ground state for nonlinear Schrödinger equations,, Rev. Math. Phys., 16 (2004), 977.  doi: 10.1142/S0129055X04002175.  Google Scholar

[29]

A. Soffer and M. Weinstein, Theory of nonlinear dispersive waves and selection of the ground state,, Phys. Rev. Lett., 95 (2005).  doi: 10.1103/PhysRevLett.95.213905.  Google Scholar

[30]

T. P. Tsai and H. T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions,, Comm. Pure. Appl. Math, 55 (2002), 153.  doi: 10.1002/cpa.3012.  Google Scholar

[31]

T. P. Tsai and H. T. Yau, Relaxation of excited states in nonlinear Schrödinger equations,, Int. Math. Res. Not., 31 (2002), 1629.  doi: 10.1155/S1073792802201063.  Google Scholar

[32]

M. Weinstein, Localized states and Dynamics in the Nonlinear Schrödinger/Gross-Pitaevskii equation,, Frontiers in Applied Dynamical Systems, 3 (2015), 41.  doi: 10.1007/978-3-319-19935-1_2.  Google Scholar

[1]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[2]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[3]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[4]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[5]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[6]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[7]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[8]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[9]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure & Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[10]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[11]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

[12]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[13]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[14]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[15]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[16]

Jaeyoung Byeon, Ohsang Kwon, Yoshihito Oshita. Standing wave concentrating on compact manifolds for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 825-842. doi: 10.3934/cpaa.2015.14.825

[17]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[18]

Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure & Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413

[19]

Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533

[20]

Jing Cui, Shu-Ming Sun. Nonlinear Schrödinger equations on a finite interval with point dissipation. Mathematical Control & Related Fields, 2019, 9 (2) : 351-384. doi: 10.3934/mcrf.2019017

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]