• Previous Article
    Discrete and continuous topological dynamics: Fields of cross sections and expansive flows
  • DCDS Home
  • This Issue
  • Next Article
    Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes
November  2016, 36(11): 5881-5910. doi: 10.3934/dcds.2016058

Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$

1. 

Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática, CEP: 58429-900, Campina Grande - Pb, Brazil

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China

Received  June 2015 Revised  April 2016 Published  August 2016

In this paper we are going to study a class of Schrödinger-Poisson system $$ \left\{ \begin{array}{ll} - \Delta u + (\lambda a(x)+1)u+ \phi u = f(u) \mbox{ in } \,\,\, \mathbb{R}^{3},\\ -\Delta \phi=4\pi u^2 \mbox{ in } \,\,\, \mathbb{R}^{3}.\\ \end{array} \right. $$ Assuming that the nonnegative function $a(x)$ has a potential well $int (a^{-1}(\{0\}))$ consisting of $k$ disjoint bounded components $\Omega_1, \Omega_2, ....., \Omega_k$ and the nonlinearity $f(t)$ has a subcritical growth, we are able to establish the existence of positive multi-bump solutions by variational methods.
Citation: Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058
References:
[1]

C. O. Alves, Existence of multi-bump solutions for a class of quasilinear problems,, Adv. Nonlinear Stud., 6 (2006), 491. Google Scholar

[2]

C. O. Alves, Multiplicity of multi-bump type nodal solutions for a class of elliptic problems in $\mathbbR^N$,, Top. Meth. Nonlinear Anal., 34 (2009), 231. doi: 10.12775/TMNA.2009.040. Google Scholar

[3]

C. O. Alves and M. A. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains,, Z. Angew. Math. Phys., 65 (2014), 1153. doi: 10.1007/s00033-013-0376-3. Google Scholar

[4]

A. Ambrosetti and R. Ruiz, Multiple bound states for the Schrödinger-Poisson problem,, Commun. Contemp. Math., 10 (2008), 391. doi: 10.1142/S021919970800282X. Google Scholar

[5]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations,, J. Math. Anal. Appl., 345 (2008), 90. doi: 10.1016/j.jmaa.2008.03.057. Google Scholar

[6]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations,, Top. Meth. Nonlinear Anal., 11 (1998), 283. Google Scholar

[7]

H. Berestycki and P.L. Lions, Nonlinear scalar field equations, I - existence of a ground state,, Arch. Rat. Mech. Analysis, 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[8]

O. Bokanowski and N. J. Mauser, Local approximation for the Hartree-Fock exchange potential: A deformation approach,, $M^3$AS, 9 (1999), 941. doi: 10.1142/S0218202599000439. Google Scholar

[9]

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems,, J. Differential Equations, 248 (2010), 521. doi: 10.1016/j.jde.2009.06.017. Google Scholar

[10]

G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations,, Commun. Appl. Anal., 7 (2003), 417. Google Scholar

[11]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A., 134 (2004), 893. doi: 10.1017/S030821050000353X. Google Scholar

[12]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations,, Adv. Nonlinear Stud., 4 (2004), 307. Google Scholar

[13]

P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations,, Adv. Nonlinear Stud., 2 (2002), 177. Google Scholar

[14]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains,, Calc. Var. PDE, 4 (1996), 121. doi: 10.1007/BF01189950. Google Scholar

[15]

Y. H. Ding and K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödinger equation,, Manuscripta Math., 112 (2003), 109. doi: 10.1007/s00229-003-0397-x. Google Scholar

[16]

L. Gongbao, Some properties of weak solutions of nonlinear scalar field equations,, Ann. Acad. Sci. Fenn. Math., 14 (1989), 27. doi: 10.5186/aasfm.1990.1521. Google Scholar

[17]

G. Siciliano, Multiple positive solutions for a Schrödinger-Poisson-Slater system,, J. Math. Analysis and Appl., 365 (2010), 288. doi: 10.1016/j.jmaa.2009.10.061. Google Scholar

[18]

H. Kikuchi, On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations,, Nonlinear Anal., 67 (2007), 1445. doi: 10.1016/j.na.2006.07.029. Google Scholar

[19]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials,, Adv. Nonlinear Stud., 8 (2008), 573. Google Scholar

[20]

I. Ianni, Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem,, Topol. Methods Nonlinear Anal., 41 (2013), 365. Google Scholar

[21]

Y. S. Jiang and H. S. Zhou, Schrödinger-Poisson system with steep potential well,, J. Differential Equations, 251 (2011), 582. doi: 10.1016/j.jde.2011.05.006. Google Scholar

[22]

S. Kim and J. Seok, On nodal solutions of the Nonlinear Schrödinger-Poisson equations,, Comm. Cont. Math., 14 (2012), 12450041. doi: 10.1142/S0219199712500411. Google Scholar

[23]

C. Miranda, Un' osservazione su un teorema di Brouwer,, Bol. Un. Mat. Ital., 3 (1940), 5. Google Scholar

[24]

N. J. Mauser, The Schrödinger-Poisson-$X_\alpha$ equation,, Applied Math. Letters, 14 (2001), 759. doi: 10.1016/S0893-9659(01)80038-0. Google Scholar

[25]

L. Pisani and G. Siciliano, Note on a Schrödinger-Poisson system in a bounded domain,, Appl. Math. Lett., 21 (2008), 521. doi: 10.1016/j.aml.2007.06.005. Google Scholar

[26]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term,, J. Funct. Analysis, 237 (2006), 655. doi: 10.1016/j.jfa.2006.04.005. Google Scholar

[27]

D. Ruiz and G. Siciliano, A note on the Schrödinger-Poisson-Slater equation on bounded domains,, Adv. Nonlinear Stud., 8 (2008), 179. Google Scholar

[28]

O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system,, J. Statistical Physics, 114 (2004), 179. doi: 10.1023/B:JOSS.0000003109.97208.53. Google Scholar

[29]

E. Séré, Existence of infinitely many homoclinic orbits in Halmitonian systems,, Math. Z., 209 (1992), 27. doi: 10.1007/BF02570817. Google Scholar

[30]

F. Zhao and L. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent,, Nonlinear Anal., 70 (2009), 2150. doi: 10.1016/j.na.2008.02.116. Google Scholar

[31]

X. Zhang and S. Ma, Multi-bump solutions of Schrödinger-Poisson equations with steep potential well,, Z. Angew. Math. Phys., 66 (2015), 1615. doi: 10.1007/s00033-014-0490-x. Google Scholar

[32]

M. Willem, Minimax Theorems,, Birkhäuser Boston, (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

show all references

References:
[1]

C. O. Alves, Existence of multi-bump solutions for a class of quasilinear problems,, Adv. Nonlinear Stud., 6 (2006), 491. Google Scholar

[2]

C. O. Alves, Multiplicity of multi-bump type nodal solutions for a class of elliptic problems in $\mathbbR^N$,, Top. Meth. Nonlinear Anal., 34 (2009), 231. doi: 10.12775/TMNA.2009.040. Google Scholar

[3]

C. O. Alves and M. A. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains,, Z. Angew. Math. Phys., 65 (2014), 1153. doi: 10.1007/s00033-013-0376-3. Google Scholar

[4]

A. Ambrosetti and R. Ruiz, Multiple bound states for the Schrödinger-Poisson problem,, Commun. Contemp. Math., 10 (2008), 391. doi: 10.1142/S021919970800282X. Google Scholar

[5]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations,, J. Math. Anal. Appl., 345 (2008), 90. doi: 10.1016/j.jmaa.2008.03.057. Google Scholar

[6]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations,, Top. Meth. Nonlinear Anal., 11 (1998), 283. Google Scholar

[7]

H. Berestycki and P.L. Lions, Nonlinear scalar field equations, I - existence of a ground state,, Arch. Rat. Mech. Analysis, 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[8]

O. Bokanowski and N. J. Mauser, Local approximation for the Hartree-Fock exchange potential: A deformation approach,, $M^3$AS, 9 (1999), 941. doi: 10.1142/S0218202599000439. Google Scholar

[9]

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems,, J. Differential Equations, 248 (2010), 521. doi: 10.1016/j.jde.2009.06.017. Google Scholar

[10]

G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations,, Commun. Appl. Anal., 7 (2003), 417. Google Scholar

[11]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A., 134 (2004), 893. doi: 10.1017/S030821050000353X. Google Scholar

[12]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations,, Adv. Nonlinear Stud., 4 (2004), 307. Google Scholar

[13]

P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations,, Adv. Nonlinear Stud., 2 (2002), 177. Google Scholar

[14]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains,, Calc. Var. PDE, 4 (1996), 121. doi: 10.1007/BF01189950. Google Scholar

[15]

Y. H. Ding and K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödinger equation,, Manuscripta Math., 112 (2003), 109. doi: 10.1007/s00229-003-0397-x. Google Scholar

[16]

L. Gongbao, Some properties of weak solutions of nonlinear scalar field equations,, Ann. Acad. Sci. Fenn. Math., 14 (1989), 27. doi: 10.5186/aasfm.1990.1521. Google Scholar

[17]

G. Siciliano, Multiple positive solutions for a Schrödinger-Poisson-Slater system,, J. Math. Analysis and Appl., 365 (2010), 288. doi: 10.1016/j.jmaa.2009.10.061. Google Scholar

[18]

H. Kikuchi, On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations,, Nonlinear Anal., 67 (2007), 1445. doi: 10.1016/j.na.2006.07.029. Google Scholar

[19]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials,, Adv. Nonlinear Stud., 8 (2008), 573. Google Scholar

[20]

I. Ianni, Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem,, Topol. Methods Nonlinear Anal., 41 (2013), 365. Google Scholar

[21]

Y. S. Jiang and H. S. Zhou, Schrödinger-Poisson system with steep potential well,, J. Differential Equations, 251 (2011), 582. doi: 10.1016/j.jde.2011.05.006. Google Scholar

[22]

S. Kim and J. Seok, On nodal solutions of the Nonlinear Schrödinger-Poisson equations,, Comm. Cont. Math., 14 (2012), 12450041. doi: 10.1142/S0219199712500411. Google Scholar

[23]

C. Miranda, Un' osservazione su un teorema di Brouwer,, Bol. Un. Mat. Ital., 3 (1940), 5. Google Scholar

[24]

N. J. Mauser, The Schrödinger-Poisson-$X_\alpha$ equation,, Applied Math. Letters, 14 (2001), 759. doi: 10.1016/S0893-9659(01)80038-0. Google Scholar

[25]

L. Pisani and G. Siciliano, Note on a Schrödinger-Poisson system in a bounded domain,, Appl. Math. Lett., 21 (2008), 521. doi: 10.1016/j.aml.2007.06.005. Google Scholar

[26]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term,, J. Funct. Analysis, 237 (2006), 655. doi: 10.1016/j.jfa.2006.04.005. Google Scholar

[27]

D. Ruiz and G. Siciliano, A note on the Schrödinger-Poisson-Slater equation on bounded domains,, Adv. Nonlinear Stud., 8 (2008), 179. Google Scholar

[28]

O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system,, J. Statistical Physics, 114 (2004), 179. doi: 10.1023/B:JOSS.0000003109.97208.53. Google Scholar

[29]

E. Séré, Existence of infinitely many homoclinic orbits in Halmitonian systems,, Math. Z., 209 (1992), 27. doi: 10.1007/BF02570817. Google Scholar

[30]

F. Zhao and L. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent,, Nonlinear Anal., 70 (2009), 2150. doi: 10.1016/j.na.2008.02.116. Google Scholar

[31]

X. Zhang and S. Ma, Multi-bump solutions of Schrödinger-Poisson equations with steep potential well,, Z. Angew. Math. Phys., 66 (2015), 1615. doi: 10.1007/s00033-014-0490-x. Google Scholar

[32]

M. Willem, Minimax Theorems,, Birkhäuser Boston, (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

[1]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[2]

Yuxia Guo, Zhongwei Tang. Multi-bump solutions for Schrödinger equation involving critical growth and potential wells. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3393-3415. doi: 10.3934/dcds.2015.35.3393

[3]

Weiming Liu, Lu Gan. Multi-bump positive solutions of a fractional nonlinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2016, 15 (2) : 413-428. doi: 10.3934/cpaa.2016.15.413

[4]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[5]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[6]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[7]

Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241

[8]

Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266

[9]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[10]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[11]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[12]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[13]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

[14]

Amna Dabaa, O. Goubet. Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1743-1756. doi: 10.3934/cpaa.2016011

[15]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[16]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[17]

Marius Ghergu, Gurpreet Singh. On a class of mixed Choquard-Schrödinger-Poisson systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 297-309. doi: 10.3934/dcdss.2019021

[18]

Pierre-Damien Thizy. Schrödinger-Poisson systems in $4$-dimensional closed manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2257-2284. doi: 10.3934/dcds.2016.36.2257

[19]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[20]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]