-
Previous Article
Stochastic difference equations with the Allee effect
- DCDS Home
- This Issue
-
Next Article
Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$
Discrete and continuous topological dynamics: Fields of cross sections and expansive flows
1. | Departamento de Matemática y Estadística del Litoral, Universidad de la República, Gral. Rivera 1350, Salto |
References:
[1] |
A. Artigue, Positive expansive flows, Topology Appl., 165 (2014), 121-132.
doi: 10.1016/j.topol.2014.01.015. |
[2] |
R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc., 55 (1949), 1101-1110.
doi: 10.1090/S0002-9904-1949-09334-5. |
[3] |
R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.
doi: 10.1016/0022-0396(72)90013-7. |
[4] |
L. W. Flinn, Expansive Flows, Phd Thesis, University of Warwick, 1972. |
[5] |
S. Goodman, Vector fields with transverse foliations, Topology, 24 (1985), 333-340.
doi: 10.1016/0040-9383(85)90005-9. |
[6] |
L. F. He and G. Z. Shan, The nonexistence of expansive flow on a compact 2-manifold, Chin. Ann. Math. Ser. B, 12 (1991), 213-218. |
[7] |
A. Illanes and S. B. Nadler Jr., Hyperspaces: Fundamentals and Recent Advances, Marcel Dekker, Inc., 1999. |
[8] |
K. Kawamura, A direct proof that each Peano continuum with a free arc admits no expansive homeomorphism, Tsukuba J. Math., 12 (1988), 521-524. |
[9] |
H. B. Keynes and M. Sears, Real-expansive flows and topological dimension, Ergodic Theory Dynam. Systems, 1 (1981), 179-195. |
[10] |
J. Lewowicz, Lyapunov functions and stability of geodesic flows, Lecture Notes in Math., 1007 (1983), Springer, 463-479.
doi: 10.1007/BFb0061429. |
[11] |
J. Milnor, Microbundles Part I, Topology, 3 (1964), 53-80.
doi: 10.1016/0040-9383(64)90005-9. |
[12] |
E. E. Moise, Grille decomposition and convexification theorems for compact metric locally connected continua, Bull. Amer. Math. Soc., 55 (1949), 1111-1121.
doi: 10.1090/S0002-9904-1949-09336-9. |
[13] |
K. Moriyasu, K. Sakai and W. Sun, $C^1$-stably expansive flows, J. Differential Equations, 213 (2005), 352-367.
doi: 10.1016/j.jde.2004.08.003. |
[14] |
M. Oka, Singular foliations on cross-sections of expansive flows on 3-manifolds, Osaka J. Math., 27 (1990), 863-883. |
[15] |
M. Paternain, Expansive flows and the fundamental group, Bull. Braz. Math. Soc., 24 (1993), 179-199.
doi: 10.1007/BF01237676. |
[16] |
R. F. Thomas, Entropy of expansive flows, Ergodic Theory Dynam. Systems, 7 (1987), 611-625.
doi: 10.1017/S0143385700004235. |
[17] |
H. Whitney, Regular family of curves, Ann. of Math., 34 (1933), 244-270.
doi: 10.2307/1968202. |
show all references
References:
[1] |
A. Artigue, Positive expansive flows, Topology Appl., 165 (2014), 121-132.
doi: 10.1016/j.topol.2014.01.015. |
[2] |
R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc., 55 (1949), 1101-1110.
doi: 10.1090/S0002-9904-1949-09334-5. |
[3] |
R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.
doi: 10.1016/0022-0396(72)90013-7. |
[4] |
L. W. Flinn, Expansive Flows, Phd Thesis, University of Warwick, 1972. |
[5] |
S. Goodman, Vector fields with transverse foliations, Topology, 24 (1985), 333-340.
doi: 10.1016/0040-9383(85)90005-9. |
[6] |
L. F. He and G. Z. Shan, The nonexistence of expansive flow on a compact 2-manifold, Chin. Ann. Math. Ser. B, 12 (1991), 213-218. |
[7] |
A. Illanes and S. B. Nadler Jr., Hyperspaces: Fundamentals and Recent Advances, Marcel Dekker, Inc., 1999. |
[8] |
K. Kawamura, A direct proof that each Peano continuum with a free arc admits no expansive homeomorphism, Tsukuba J. Math., 12 (1988), 521-524. |
[9] |
H. B. Keynes and M. Sears, Real-expansive flows and topological dimension, Ergodic Theory Dynam. Systems, 1 (1981), 179-195. |
[10] |
J. Lewowicz, Lyapunov functions and stability of geodesic flows, Lecture Notes in Math., 1007 (1983), Springer, 463-479.
doi: 10.1007/BFb0061429. |
[11] |
J. Milnor, Microbundles Part I, Topology, 3 (1964), 53-80.
doi: 10.1016/0040-9383(64)90005-9. |
[12] |
E. E. Moise, Grille decomposition and convexification theorems for compact metric locally connected continua, Bull. Amer. Math. Soc., 55 (1949), 1111-1121.
doi: 10.1090/S0002-9904-1949-09336-9. |
[13] |
K. Moriyasu, K. Sakai and W. Sun, $C^1$-stably expansive flows, J. Differential Equations, 213 (2005), 352-367.
doi: 10.1016/j.jde.2004.08.003. |
[14] |
M. Oka, Singular foliations on cross-sections of expansive flows on 3-manifolds, Osaka J. Math., 27 (1990), 863-883. |
[15] |
M. Paternain, Expansive flows and the fundamental group, Bull. Braz. Math. Soc., 24 (1993), 179-199.
doi: 10.1007/BF01237676. |
[16] |
R. F. Thomas, Entropy of expansive flows, Ergodic Theory Dynam. Systems, 7 (1987), 611-625.
doi: 10.1017/S0143385700004235. |
[17] |
H. Whitney, Regular family of curves, Ann. of Math., 34 (1933), 244-270.
doi: 10.2307/1968202. |
[1] |
César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577 |
[2] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
[3] |
Daniel J. Thompson. A criterion for topological entropy to decrease under normalised Ricci flow. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1243-1248. doi: 10.3934/dcds.2011.30.1243 |
[4] |
Gang Bao, Jun Lai. Radar cross section reduction of a cavity in the ground plane: TE polarization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 419-434. doi: 10.3934/dcdss.2015.8.419 |
[5] |
Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581 |
[6] |
Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393 |
[7] |
Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132 |
[8] |
Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015 |
[9] |
Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060 |
[10] |
Kien Ming Ng, Trung Hieu Tran. A parallel water flow algorithm with local search for solving the quadratic assignment problem. Journal of Industrial and Management Optimization, 2019, 15 (1) : 235-259. doi: 10.3934/jimo.2018041 |
[11] |
Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013 |
[12] |
Arnab Roy, Takéo Takahashi. Local null controllability of a rigid body moving into a Boussinesq flow. Mathematical Control and Related Fields, 2019, 9 (4) : 793-836. doi: 10.3934/mcrf.2019050 |
[13] |
Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033 |
[14] |
Fabien Caubet, Carlos Conca, Matías Godoy. On the detection of several obstacles in 2D Stokes flow: Topological sensitivity and combination with shape derivatives. Inverse Problems and Imaging, 2016, 10 (2) : 327-367. doi: 10.3934/ipi.2016003 |
[15] |
Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173 |
[16] |
Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393 |
[17] |
Jun Li, Qi Wang. Flow driven dynamics of sheared flowing polymer-particulate nanocomposites. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1359-1382. doi: 10.3934/dcds.2010.26.1359 |
[18] |
Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6 (4) : 681-694. doi: 10.3934/nhm.2011.6.681 |
[19] |
Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166 |
[20] |
Mahdi Boukrouche, Grzegorz Łukaszewicz. On global in time dynamics of a planar Bingham flow subject to a subdifferential boundary condition. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3969-3983. doi: 10.3934/dcds.2014.34.3969 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]