November  2016, 36(11): 5929-5949. doi: 10.3934/dcds.2016060

Stochastic difference equations with the Allee effect

1. 

Dept. of Math. and Stats., University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4, Canada

2. 

Department of Mathematics and Computer Science, The University of the West Indies, Mona, Kingston 7

Received  March 2015 Revised  May 2016 Published  August 2016

For a stochastically perturbed equation $x_{n+1} =\max\{f(x_n)+l\chi_{n+1}, 0 \}$ with $f(x) < x$ on $(0,m)$, which corresponds to the Allee effect, we observe that for very small perturbation amplitude $l$, the eventual behavior is similar to a non-perturbed case: there is extinction for small initial values in $(0,m-\varepsilon)$ and persistence for $x_0 \in (m + \delta, H]$ for some $H$ satisfying $H > f(H)> m$. As the amplitude grows, an interval $(m-\varepsilon, m + \delta)$ of initial values arises and expands, such that with a certain probability, $x_n$ sustains in $[m, H]$, and possibly eventually gets into the interval $(0,m-\varepsilon)$, with a positive probability. Lower estimates for these probabilities are presented. If $H$ is large enough, as the amplitude of perturbations grows, the Allee effect disappears: a solution persists for any positive initial value.
Citation: Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060
References:
[1]

W. C. Allee, Animal Aggregations, a Study in General Sociology,, University of Chicago Press, (1931).   Google Scholar

[2]

J. A. D. Appleby, G. Berkolaiko and A. Rodkina, On local stability for a nonlinear difference equation with a non-hyperbolic equilibrium and fading stochastic perturbations,, J. Difference Equ. Appl., 14 (2008), 923.  doi: 10.1080/10236190701871786.  Google Scholar

[3]

J. A. D. Appleby, G. Berkolaiko and A. Rodkina, Non-exponential stability and decay rates in nonlinear stochastic difference equations with unbounded noise,, Stochastics, 81 (2009), 99.  doi: 10.1080/17442500802088541.  Google Scholar

[4]

J. A. D. Appleby, X. Mao and A. Rodkina, A., On stochastic stabilization of difference equations,, Dynamics of Continuous and Discrete System, 15 (2006), 843.  doi: 10.3934/dcds.2006.15.843.  Google Scholar

[5]

G. Berkolaiko and A. Rodkina, Almost sure convergence of solutions to nonhomogeneous stochastic difference equation,, J. Difference Equ. Appl., 12 (2006), 535.  doi: 10.1080/10236190600574093.  Google Scholar

[6]

D. S. Boukal and L. Berec, Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters,, J. Theor. Biol., 218 (2002), 375.  doi: 10.1006/jtbi.2002.3084.  Google Scholar

[7]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, Springer-Verlag New York, (2001).  doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[8]

E. Braverman, Random perturbations of difference equations with Allee effect: Switch of stability properties,, Proceedings of the Workshop Future Directions in Difference Equations, (2011), 51.   Google Scholar

[9]

E. Braverman and J. J. Haroutunian, Chaotic and stable perturbed maps: 2-cycles and spatial models,, Chaos, 20 (2010).  doi: 10.1063/1.3404774.  Google Scholar

[10]

E. Braverman and A. Rodkina, Stabilization of two-cycles of difference equations with stochastic perturbations,, J. Difference Equ. Appl., 19 (2013), 1192.  doi: 10.1080/10236198.2012.726989.  Google Scholar

[11]

E. Braverman and A. Rodkina, Difference equations of Ricker and logistic types under bounded stochastic perturbations with positive mean,, Comput. Math. Appl., 66 (2013), 2281.  doi: 10.1016/j.camwa.2013.06.014.  Google Scholar

[12]

M. A. Burgman, S. Ferson and H. R. Akćakaya, Risk Assessment in Conservation Biology,, Chapman & Hall, (1993).   Google Scholar

[13]

S. N. Cohen and R. J. Elliott, Backward stochastic difference equations and nearly time-consistent nonlinear expectations,, SIAM J. Control Optim., 49 (2011), 125.  doi: 10.1137/090763688.  Google Scholar

[14]

N. Dokuchaev and A. Rodkina, Instability and stability of solutions of systems of nonlinear stochastic difference equations with diagonal noise,, J. Difference Equ. Appl., 14 (2014), 744.  doi: 10.1080/10236198.2013.815748.  Google Scholar

[15]

F. C. Hoppensteadt, Mathematical Methods of Population Biology,, Cambridge University Press, (1982).   Google Scholar

[16]

J. Jacobs, Cooperation, optimal density and low density thresholds: Yet another modification of the logistic model,, Oecologia, 64 (1984), 389.  doi: 10.1007/BF00379138.  Google Scholar

[17]

C. Kelly and A. Rodkina, Constrained stability and instability of polynomial difference equations with state-dependent noise,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 913.  doi: 10.3934/dcdsb.2009.11.913.  Google Scholar

[18]

V. Kolmanovskii and L. Shaikhet, Some conditions for boundedness of solutions of difference Volterra equations,, Appl. Math. Lett., 16 (2003), 857.  doi: 10.1016/S0893-9659(03)90008-5.  Google Scholar

[19]

A. Rodkina and M. Basin, On delay-dependent stability for vector nonlinear stochastic delay-difference equations with Volterra diffusion term,, Syst. Control Lett., 56 (2007), 423.  doi: 10.1016/j.sysconle.2006.11.001.  Google Scholar

[20]

S. J. Schreiber, Allee effect, extinctions, and chaotic transients in simple population models,, Theor. Popul. Biol., 64 (2003), 201.  doi: 10.1016/S0040-5809(03)00072-8.  Google Scholar

[21]

S. J. Schreiber, Persistence for stochastic difference equations: A mini-review,, J. Difference Equ. Appl., 18 (2012), 1381.  doi: 10.1080/10236198.2011.628662.  Google Scholar

[22]

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Difference Equations,, Springer, (2011).  doi: 10.1007/978-0-85729-685-6.  Google Scholar

[23]

A. N. Shiryaev, Probability, (2nd edition),, Springer, (1996).  doi: 10.1007/978-1-4757-2539-1.  Google Scholar

show all references

References:
[1]

W. C. Allee, Animal Aggregations, a Study in General Sociology,, University of Chicago Press, (1931).   Google Scholar

[2]

J. A. D. Appleby, G. Berkolaiko and A. Rodkina, On local stability for a nonlinear difference equation with a non-hyperbolic equilibrium and fading stochastic perturbations,, J. Difference Equ. Appl., 14 (2008), 923.  doi: 10.1080/10236190701871786.  Google Scholar

[3]

J. A. D. Appleby, G. Berkolaiko and A. Rodkina, Non-exponential stability and decay rates in nonlinear stochastic difference equations with unbounded noise,, Stochastics, 81 (2009), 99.  doi: 10.1080/17442500802088541.  Google Scholar

[4]

J. A. D. Appleby, X. Mao and A. Rodkina, A., On stochastic stabilization of difference equations,, Dynamics of Continuous and Discrete System, 15 (2006), 843.  doi: 10.3934/dcds.2006.15.843.  Google Scholar

[5]

G. Berkolaiko and A. Rodkina, Almost sure convergence of solutions to nonhomogeneous stochastic difference equation,, J. Difference Equ. Appl., 12 (2006), 535.  doi: 10.1080/10236190600574093.  Google Scholar

[6]

D. S. Boukal and L. Berec, Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters,, J. Theor. Biol., 218 (2002), 375.  doi: 10.1006/jtbi.2002.3084.  Google Scholar

[7]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, Springer-Verlag New York, (2001).  doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[8]

E. Braverman, Random perturbations of difference equations with Allee effect: Switch of stability properties,, Proceedings of the Workshop Future Directions in Difference Equations, (2011), 51.   Google Scholar

[9]

E. Braverman and J. J. Haroutunian, Chaotic and stable perturbed maps: 2-cycles and spatial models,, Chaos, 20 (2010).  doi: 10.1063/1.3404774.  Google Scholar

[10]

E. Braverman and A. Rodkina, Stabilization of two-cycles of difference equations with stochastic perturbations,, J. Difference Equ. Appl., 19 (2013), 1192.  doi: 10.1080/10236198.2012.726989.  Google Scholar

[11]

E. Braverman and A. Rodkina, Difference equations of Ricker and logistic types under bounded stochastic perturbations with positive mean,, Comput. Math. Appl., 66 (2013), 2281.  doi: 10.1016/j.camwa.2013.06.014.  Google Scholar

[12]

M. A. Burgman, S. Ferson and H. R. Akćakaya, Risk Assessment in Conservation Biology,, Chapman & Hall, (1993).   Google Scholar

[13]

S. N. Cohen and R. J. Elliott, Backward stochastic difference equations and nearly time-consistent nonlinear expectations,, SIAM J. Control Optim., 49 (2011), 125.  doi: 10.1137/090763688.  Google Scholar

[14]

N. Dokuchaev and A. Rodkina, Instability and stability of solutions of systems of nonlinear stochastic difference equations with diagonal noise,, J. Difference Equ. Appl., 14 (2014), 744.  doi: 10.1080/10236198.2013.815748.  Google Scholar

[15]

F. C. Hoppensteadt, Mathematical Methods of Population Biology,, Cambridge University Press, (1982).   Google Scholar

[16]

J. Jacobs, Cooperation, optimal density and low density thresholds: Yet another modification of the logistic model,, Oecologia, 64 (1984), 389.  doi: 10.1007/BF00379138.  Google Scholar

[17]

C. Kelly and A. Rodkina, Constrained stability and instability of polynomial difference equations with state-dependent noise,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 913.  doi: 10.3934/dcdsb.2009.11.913.  Google Scholar

[18]

V. Kolmanovskii and L. Shaikhet, Some conditions for boundedness of solutions of difference Volterra equations,, Appl. Math. Lett., 16 (2003), 857.  doi: 10.1016/S0893-9659(03)90008-5.  Google Scholar

[19]

A. Rodkina and M. Basin, On delay-dependent stability for vector nonlinear stochastic delay-difference equations with Volterra diffusion term,, Syst. Control Lett., 56 (2007), 423.  doi: 10.1016/j.sysconle.2006.11.001.  Google Scholar

[20]

S. J. Schreiber, Allee effect, extinctions, and chaotic transients in simple population models,, Theor. Popul. Biol., 64 (2003), 201.  doi: 10.1016/S0040-5809(03)00072-8.  Google Scholar

[21]

S. J. Schreiber, Persistence for stochastic difference equations: A mini-review,, J. Difference Equ. Appl., 18 (2012), 1381.  doi: 10.1080/10236198.2011.628662.  Google Scholar

[22]

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Difference Equations,, Springer, (2011).  doi: 10.1007/978-0-85729-685-6.  Google Scholar

[23]

A. N. Shiryaev, Probability, (2nd edition),, Springer, (1996).  doi: 10.1007/978-1-4757-2539-1.  Google Scholar

[1]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[2]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[3]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[4]

J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3131-3163. doi: 10.3934/dcdsb.2015.20.3131

[5]

Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics. Networks & Heterogeneous Media, 2009, 4 (1) : 67-90. doi: 10.3934/nhm.2009.4.67

[6]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[7]

Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2321-2336. doi: 10.3934/dcdsb.2016049

[8]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[9]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[10]

Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040

[11]

Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073

[12]

Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi. Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 883-904. doi: 10.3934/mbe.2018040

[13]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[14]

Yuying Liu, Yuxiao Guo, Junjie Wei. Dynamics in a diffusive predator-prey system with stage structure and strong allee effect. Communications on Pure & Applied Analysis, 2020, 19 (2) : 883-910. doi: 10.3934/cpaa.2020040

[15]

MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777

[16]

G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 517-525. doi: 10.3934/dcdsb.2004.4.517

[17]

Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3615-3631. doi: 10.3934/dcdsb.2018307

[18]

Christopher M. Kribs-Zaleta, Melanie Lee, Christine Román, Shari Wiley, Carlos M. Hernández-Suárez. The Effect of the HIV/AIDS Epidemic on Africa's Truck Drivers. Mathematical Biosciences & Engineering, 2005, 2 (4) : 771-788. doi: 10.3934/mbe.2005.2.771

[19]

Alexei Pokrovskii, Dmitrii Rachinskii. Effect of positive feedback on Devil's staircase input-output relationship. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1095-1112. doi: 10.3934/dcdss.2013.6.1095

[20]

Henryk Leszczyński, Monika Wrzosek. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion. Mathematical Biosciences & Engineering, 2017, 14 (1) : 237-248. doi: 10.3934/mbe.2017015

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]