November  2016, 36(11): 5951-5970. doi: 10.3934/dcds.2016061

A class of adding machines and Julia sets

1. 

Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, RJ, Brazil

Received  August 2015 Revised  May 2016 Published  August 2016

In this work we define a stochastic adding machine associated to the Fibonacci base and to a probabilities sequence $\overline{p}=(p_i)_{i\geq 1}$. We obtain a Markov chain whose states are the set of nonnegative integers. We study probabilistic properties of this chain, such as transience and recurrence. We also prove that the spectrum associated to this Markov chain is connected to the fibered Julia sets for a class of endomorphisms in $\mathbb{C}^2$.
Citation: Danilo Antonio Caprio. A class of adding machines and Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5951-5970. doi: 10.3934/dcds.2016061
References:
[1]

H. El Abdalaoui, S. Bonnot, A. Messaoudi and O. Sester, On the Fibonacci complex dynamical systems,, Discrete and Continuous Dynamical Systems - A, 36 (2016), 2449.  doi: 10.3934/dcds.2016.36.2449.  Google Scholar

[2]

H. El Abdalaoui and A. Messaoudi, On the spectrum of stochastic perturbations of the shift and Julia Sets,, Fundamenta Mathematicae, 218 (2012), 47.  doi: 10.4064/fm218-1-3.  Google Scholar

[3]

D. A. Caprio, A class of adding machine and Julia sets, preprint,, , ().   Google Scholar

[4]

D. A. Caprio and A. Messaoudi, Julia Sets for a class of endomorphisms on $\mathbbC^2$,, work in progress., ().   Google Scholar

[5]

C. Frougny, Systṁes de numération linéaires et automates finis,, Ph.D thesis, (1989), 89.   Google Scholar

[6]

C. Frougny, Fibonacci representations and finite automata,, IEEE Trans. Inform. Theory, 37 (1991), 393.  doi: 10.1109/18.75263.  Google Scholar

[7]

P. J. Grabner, P. Liardet and R. F. Tichy, Odometers and systems of numeration,, Acta Arithmetica, 70 (1995), 103.   Google Scholar

[8]

P. R. Killeen and T. J. Taylor, A stochastic adding machine and complex dynamics,, Nonlinearity, 13 (2000), 1889.  doi: 10.1088/0951-7715/13/6/302.  Google Scholar

[9]

P. R. Killeen and T. J. Taylor, How the propagation of error through stochastic counters affects time discrimination and other psychophysical judgements,, Psychological Review, 107 (2000), 430.   Google Scholar

[10]

G. F. Lawler, Introduction to Stochastic Processes,, $1^{nd}$ edition, (1995).   Google Scholar

[11]

A. Messaoudi, O. Sester and G. Valle, Spectrum of stochastic adding machines and fibered Julia sets,, Stochastics and Dynamics, 13 (2013).  doi: 10.1142/S0219493712500219.  Google Scholar

[12]

A. Messaoudi and D. Smania, Eigenvalues of Fibonacci stochastic adding machine,, Stochastics and Dynamics, 10 (2010), 291.  doi: 10.1142/S0219493710002966.  Google Scholar

[13]

A. Messaoudi and R. M. A. Uceda, Stochastic adding machine and 2-dimensional Julia sets,, Discrete and Continuous Dynamical Systems - A, 34 (2014), 5247.  doi: 10.3934/dcds.2014.34.5247.  Google Scholar

[14]

A. Messaoudi and G. Valle, Spectra of stochastic adding machines based on Cantor Systems of Numeration, preprint,, , ().   Google Scholar

[15]

J. Milnor, Dynamics in one complex variable,, $3^{nd}$ edition, (2006).   Google Scholar

[16]

S. Morosawa, Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics,, Cambridge Studies in Advanced Mathematics, (2000).   Google Scholar

[17]

J. Y. Ouvrard, Probabilités,, Cassini, (2009).   Google Scholar

[18]

E. Zeckendorff, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas,, Bull. Soc. Royale Sci. Liège, 42 (1972), 179.   Google Scholar

show all references

References:
[1]

H. El Abdalaoui, S. Bonnot, A. Messaoudi and O. Sester, On the Fibonacci complex dynamical systems,, Discrete and Continuous Dynamical Systems - A, 36 (2016), 2449.  doi: 10.3934/dcds.2016.36.2449.  Google Scholar

[2]

H. El Abdalaoui and A. Messaoudi, On the spectrum of stochastic perturbations of the shift and Julia Sets,, Fundamenta Mathematicae, 218 (2012), 47.  doi: 10.4064/fm218-1-3.  Google Scholar

[3]

D. A. Caprio, A class of adding machine and Julia sets, preprint,, , ().   Google Scholar

[4]

D. A. Caprio and A. Messaoudi, Julia Sets for a class of endomorphisms on $\mathbbC^2$,, work in progress., ().   Google Scholar

[5]

C. Frougny, Systṁes de numération linéaires et automates finis,, Ph.D thesis, (1989), 89.   Google Scholar

[6]

C. Frougny, Fibonacci representations and finite automata,, IEEE Trans. Inform. Theory, 37 (1991), 393.  doi: 10.1109/18.75263.  Google Scholar

[7]

P. J. Grabner, P. Liardet and R. F. Tichy, Odometers and systems of numeration,, Acta Arithmetica, 70 (1995), 103.   Google Scholar

[8]

P. R. Killeen and T. J. Taylor, A stochastic adding machine and complex dynamics,, Nonlinearity, 13 (2000), 1889.  doi: 10.1088/0951-7715/13/6/302.  Google Scholar

[9]

P. R. Killeen and T. J. Taylor, How the propagation of error through stochastic counters affects time discrimination and other psychophysical judgements,, Psychological Review, 107 (2000), 430.   Google Scholar

[10]

G. F. Lawler, Introduction to Stochastic Processes,, $1^{nd}$ edition, (1995).   Google Scholar

[11]

A. Messaoudi, O. Sester and G. Valle, Spectrum of stochastic adding machines and fibered Julia sets,, Stochastics and Dynamics, 13 (2013).  doi: 10.1142/S0219493712500219.  Google Scholar

[12]

A. Messaoudi and D. Smania, Eigenvalues of Fibonacci stochastic adding machine,, Stochastics and Dynamics, 10 (2010), 291.  doi: 10.1142/S0219493710002966.  Google Scholar

[13]

A. Messaoudi and R. M. A. Uceda, Stochastic adding machine and 2-dimensional Julia sets,, Discrete and Continuous Dynamical Systems - A, 34 (2014), 5247.  doi: 10.3934/dcds.2014.34.5247.  Google Scholar

[14]

A. Messaoudi and G. Valle, Spectra of stochastic adding machines based on Cantor Systems of Numeration, preprint,, , ().   Google Scholar

[15]

J. Milnor, Dynamics in one complex variable,, $3^{nd}$ edition, (2006).   Google Scholar

[16]

S. Morosawa, Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics,, Cambridge Studies in Advanced Mathematics, (2000).   Google Scholar

[17]

J. Y. Ouvrard, Probabilités,, Cassini, (2009).   Google Scholar

[18]

E. Zeckendorff, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas,, Bull. Soc. Royale Sci. Liège, 42 (1972), 179.   Google Scholar

[1]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[2]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[3]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[4]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[5]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[6]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[7]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[10]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[13]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[14]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[15]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[19]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]