\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Euler-Poincaré-Arnold equations on semi-direct products II

Abstract Related Papers Cited by
  • We study the well-posedness of the Euler-Poincaré-Arnold equations on the semi-direct products of the group of orientation-preserving diffeomorphisms of the circle with itself. To achieve this goal, according to the previous results obtained in [5], we had to extend the results obtained in [10] for the general case of inertia operators of pseudo-differential type.
    Mathematics Subject Classification: Primary: 58D05, 58B25, 22E65; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.doi: 10.5802/aif.233.

    [2]

    A. Bastiani, Applications différentiable et variétés différentiables de dimension infinie, J. Anal. Math., 13 (1964), 1-114.doi: 10.1007/BF02786619.

    [3]

    M. Bauer, M. Bruveris and P. Michor, Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vis., 50 (2014), 60-97.doi: 10.1007/s10851-013-0490-z.

    [4]

    M. Bauer, J. Escher and B. Kolev, Local and global well-posedness of the fractional order EPDiff equation on $R^d$, Journal of Diff. Equations, 258 (2015), 2010-2053.doi: 10.1016/j.jde.2014.11.021.

    [5]

    E. C. Cismas, Euler-Poincaré equations on semi-direct products, Monatshefte für Math., 179 (2014), 491-507.doi: 10.1007/s00605-014-0720-5.

    [6]

    E. C. Cismas, https://www.tib.eu/en/search/download/?tx_tibsearch_search Ph.D thesis, Leibniz University in Hannover, 2015.

    [7]

    A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, 35 (2002), 51-79.doi: 10.1088/0305-4470/35/32/201.

    [8]

    A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.doi: 10.1007/s00014-003-0785-6.

    [9]

    D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 2 (1970), 102-163.doi: 10.2307/1970699.

    [10]

    J. Escher and B. Kolev, Right-invariant Sobolev metrics of fractional order on the diffeomorphisms group of the circle, Journal of Geometric Mechanics, 6 (2014) 335-372.doi: 10.3934/jgm.2014.6.335.

    [11]

    J. Escher, R. Ivanov and B. Kolev, Euler equations on a semi-direct product of the diffeomorphims group by itself, Journal of Geometric Mechanics, 3 (2011), 313-322.

    [12]

    J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, Math. Z., 269 (2011), 1137-1153.doi: 10.1007/s00209-010-0778-2.

    [13]

    J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation, Commun. Pure Appl. Anal., 11 (2012), 1407-1419.doi: 10.3934/cpaa.2012.11.1407.

    [14]

    J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation, Communications in Contemporary Mathematics, 14 (2012), 24-36.doi: 10.1142/S0219199712500162.

    [15]

    J. Escher and B. Kolev, Geometrical methods for equations of hydrodynamical type, J. Nonlinear Math. Phys., 19 (2012), 161-178.doi: 10.1142/S140292511240013X.

    [16]

    L. Guieu and C. Roger, L'algèbre et le groupe de Virasoro, Les Publications CRM, Montreal, QC, 2007.

    [17]

    R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., 7 (1982), 65-222.doi: 10.1090/S0273-0979-1982-15004-2.

    [18]

    A. Hirani, J. Marsden and J. Arvo, Averaged template matching equations, Proceedings of Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, 2134 (2001), 528-543.doi: 10.1007/3-540-44745-8_35.

    [19]

    D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semi-direct products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.doi: 10.1006/aima.1998.1721.

    [20]

    D. Holm and J. Marsden, Momentum maps and measure-valued solutions for the EPDiff equation, The Breadth of Symplectic and Poisson geometry, A festschrift for Alan Weinstein, Progress in Mathematics, 232 (2004), 203-235.

    [21]

    H. H. Keller, Differential Calculus in Locally Convex Spaces, Lecture Notes in Math., Springer-Verlag, 1974.doi: 10.1007/BFb0070564.

    [22]

    A. A. Kirillov, Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments, Twistor Geometry and Non-Linear Systems, 970 (1982), 101-123.doi: 10.1007/BFb0066026.

    [23]

    M. Kohlmann, On a two-component Camassa-Holm system, Journal of Geometry and Physics, 62 (2012), 832-838.doi: 10.1016/j.geomphys.2012.01.001.

    [24]

    B. Kolev, Lie groups and mechanics: An introduction, J. Nonlinear Math. Phys., 11 (2004), 480-498.

    [25]

    S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, 191, Springer-Verlag, New York, 1999.doi: 10.1007/978-1-4612-0541-8.

    [26]

    A. D. Michal, Differentiable calculus in linear topological spaces, Proc. Natl. Acad. Sci., 24 (1938), 340-342.

    [27]

    P. Michor and A. Kriegl, The Convenient Setting of Global Analysis, Math. Surveys and Monographs, 53, AMS 1997.doi: 10.1090/surv/053.

    [28]

    J. Milnor, Remarks on infinite-dimensional Lie groups, Relativity, groups and topology, II (Les Houches), North-Holland, Amsterdam, (1984), 1007-1057.

    [29]

    G. Misiołek and S. C. Preston, Fredholm properties of Riemannian exponential maps on diffeomorphism groups, Invent. math., 179 (2010), 191-227.doi: 10.1007/s00222-009-0217-3.

    [30]

    O. Muller, A metric approach to Fréchet geometry, J. Geom. Phys., 58 (2008), 1477-1500.doi: 10.1016/j.geomphys.2008.06.004.

    [31]

    K. H. Neeb, Towards a Lie theory of locally convex groups. Japan. J. Math., 1 (2006), 291-468.doi: 10.1007/s11537-006-0606-y.

    [32]

    H. Omori, Infinite-dimensional Lie Groups, Translations of Math. Monographs, 158, 1997.

    [33]

    H. Poincaré., Sur une forme nouvelle des équations de la méchanique, C.R. Acad. Sci., 132 (1901), 369-371.

    [34]

    M. Ruzhansky and V. Turunen, Pseudo-differential Operators and Symmetries, Birkhauser, 2010.doi: 10.1007/978-3-7643-8514-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return