Advanced Search
Article Contents
Article Contents

Euler-Poincaré-Arnold equations on semi-direct products II

Abstract Related Papers Cited by
  • We study the well-posedness of the Euler-Poincaré-Arnold equations on the semi-direct products of the group of orientation-preserving diffeomorphisms of the circle with itself. To achieve this goal, according to the previous results obtained in [5], we had to extend the results obtained in [10] for the general case of inertia operators of pseudo-differential type.
    Mathematics Subject Classification: Primary: 58D05, 58B25, 22E65; Secondary: 35Q35.


    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.doi: 10.5802/aif.233.


    A. Bastiani, Applications différentiable et variétés différentiables de dimension infinie, J. Anal. Math., 13 (1964), 1-114.doi: 10.1007/BF02786619.


    M. Bauer, M. Bruveris and P. Michor, Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vis., 50 (2014), 60-97.doi: 10.1007/s10851-013-0490-z.


    M. Bauer, J. Escher and B. Kolev, Local and global well-posedness of the fractional order EPDiff equation on $R^d$, Journal of Diff. Equations, 258 (2015), 2010-2053.doi: 10.1016/j.jde.2014.11.021.


    E. C. Cismas, Euler-Poincaré equations on semi-direct products, Monatshefte für Math., 179 (2014), 491-507.doi: 10.1007/s00605-014-0720-5.


    E. C. Cismas, https://www.tib.eu/en/search/download/?tx_tibsearch_search Ph.D thesis, Leibniz University in Hannover, 2015.


    A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, 35 (2002), 51-79.doi: 10.1088/0305-4470/35/32/201.


    A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.doi: 10.1007/s00014-003-0785-6.


    D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 2 (1970), 102-163.doi: 10.2307/1970699.


    J. Escher and B. Kolev, Right-invariant Sobolev metrics of fractional order on the diffeomorphisms group of the circle, Journal of Geometric Mechanics, 6 (2014) 335-372.doi: 10.3934/jgm.2014.6.335.


    J. Escher, R. Ivanov and B. Kolev, Euler equations on a semi-direct product of the diffeomorphims group by itself, Journal of Geometric Mechanics, 3 (2011), 313-322.


    J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, Math. Z., 269 (2011), 1137-1153.doi: 10.1007/s00209-010-0778-2.


    J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation, Commun. Pure Appl. Anal., 11 (2012), 1407-1419.doi: 10.3934/cpaa.2012.11.1407.


    J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation, Communications in Contemporary Mathematics, 14 (2012), 24-36.doi: 10.1142/S0219199712500162.


    J. Escher and B. Kolev, Geometrical methods for equations of hydrodynamical type, J. Nonlinear Math. Phys., 19 (2012), 161-178.doi: 10.1142/S140292511240013X.


    L. Guieu and C. Roger, L'algèbre et le groupe de Virasoro, Les Publications CRM, Montreal, QC, 2007.


    R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., 7 (1982), 65-222.doi: 10.1090/S0273-0979-1982-15004-2.


    A. Hirani, J. Marsden and J. Arvo, Averaged template matching equations, Proceedings of Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, 2134 (2001), 528-543.doi: 10.1007/3-540-44745-8_35.


    D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semi-direct products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.doi: 10.1006/aima.1998.1721.


    D. Holm and J. Marsden, Momentum maps and measure-valued solutions for the EPDiff equation, The Breadth of Symplectic and Poisson geometry, A festschrift for Alan Weinstein, Progress in Mathematics, 232 (2004), 203-235.


    H. H. Keller, Differential Calculus in Locally Convex Spaces, Lecture Notes in Math., Springer-Verlag, 1974.doi: 10.1007/BFb0070564.


    A. A. Kirillov, Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments, Twistor Geometry and Non-Linear Systems, 970 (1982), 101-123.doi: 10.1007/BFb0066026.


    M. Kohlmann, On a two-component Camassa-Holm system, Journal of Geometry and Physics, 62 (2012), 832-838.doi: 10.1016/j.geomphys.2012.01.001.


    B. Kolev, Lie groups and mechanics: An introduction, J. Nonlinear Math. Phys., 11 (2004), 480-498.


    S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, 191, Springer-Verlag, New York, 1999.doi: 10.1007/978-1-4612-0541-8.


    A. D. Michal, Differentiable calculus in linear topological spaces, Proc. Natl. Acad. Sci., 24 (1938), 340-342.


    P. Michor and A. Kriegl, The Convenient Setting of Global Analysis, Math. Surveys and Monographs, 53, AMS 1997.doi: 10.1090/surv/053.


    J. Milnor, Remarks on infinite-dimensional Lie groups, Relativity, groups and topology, II (Les Houches), North-Holland, Amsterdam, (1984), 1007-1057.


    G. Misiołek and S. C. Preston, Fredholm properties of Riemannian exponential maps on diffeomorphism groups, Invent. math., 179 (2010), 191-227.doi: 10.1007/s00222-009-0217-3.


    O. Muller, A metric approach to Fréchet geometry, J. Geom. Phys., 58 (2008), 1477-1500.doi: 10.1016/j.geomphys.2008.06.004.


    K. H. Neeb, Towards a Lie theory of locally convex groups. Japan. J. Math., 1 (2006), 291-468.doi: 10.1007/s11537-006-0606-y.


    H. Omori, Infinite-dimensional Lie Groups, Translations of Math. Monographs, 158, 1997.


    H. Poincaré., Sur une forme nouvelle des équations de la méchanique, C.R. Acad. Sci., 132 (1901), 369-371.


    M. Ruzhansky and V. Turunen, Pseudo-differential Operators and Symmetries, Birkhauser, 2010.doi: 10.1007/978-3-7643-8514-9.

  • 加载中

Article Metrics

HTML views() PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint