\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Second-order variational problems on Lie groupoids and optimal control applications

Abstract Related Papers Cited by
  • In this paper we study, from a variational and geometrical point of view, second-order variational problems on Lie groupoids and the construction of variational integrators for optimal control problems. First, we develop variational techniques for second-order variational problems on Lie groupoids and their applications to the construction of variational integrators for optimal control problems of mechanical systems. Next, we show how Lagrangian submanifolds of a symplectic groupoid gives intrinsically the discrete dynamics for second-order systems, both unconstrained and constrained, and we study the geometric properties of the implicit flow which defines the dynamics in a Lagrangian submanifold. We also study the theory of reduction by symmetries and the corresponding Noether theorem.
    Mathematics Subject Classification: Primary: 70G45; Secondary: 70Hxx, 49J15, 53D17, 37M15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Abrunheiro and M. Camarinha, Optimal control of affine connection control systems, from the point of view of lie algebroids, Int. J. Geom. Methods Mod. Phys., (2014).doi: 10.1142/S0219887814500388.

    [2]

    R. Benito, de León M and D. Martín de Diego, Higher-order discrete lagrangian mechanics, Int. Journal of Geometric Methods in Modern Physics, 3 (2006), 421-436.doi: 10.1142/S0219887806001235.

    [3]

    A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics Series, 24, Springer-Verlag, New York, 2003.doi: 10.1007/b97376.

    [4]

    A. M. Bloch, L. Colombo, R. Gupta and D. Martín de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems, Analysis and geometry in control theory and its applications, Springer, 2015.doi: 10.1007/978-3-319-06917-3_2.

    [5]

    A. M. Bloch and P. E. Crouch, On the equivalence of higher order variational problems and optimal control problems, Proceedings of 35rd IEEE Conference on Decision and Control, (1996), 1648-1653.doi: 10.1109/CDC.1996.572780.

    [6]

    A. M. Bloch, I. I. Hussein, M. Leok and A. K. Sanyal, Geometric structure-preserving optimal control of the rigid body, Journal of Dynamical and Control Systems, 15 (2009), 307-330.doi: 10.1007/s10883-009-9071-2.

    [7]

    AI. Bobenko and YB. Suris, Discrete Lagrangian reduction, discrete Euler-Poincaré equations and semidirect products, Lett. Math. Phys., 49, (1999).doi: 10.1023/A:1007654605901.

    [8]

    N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups, Foundations of Computational Mathematics, 9 (2009), 197-219.doi: 10.1007/s10208-008-9030-4.

    [9]

    A. J. Bruce, K. Grabowska and J. Grabowski, Higher order mechanics on graded bundles, J. Phys. A, 48 (2015), 205203.doi: 10.1088/1751-8113/48/20/205203.

    [10]

    A. J. Bruce, K. Grabowska, J. Grabowski and P. Urbanski, New Developments In Geometric Mechanics, To appear in Banach Center Publications. Preprint available at arXiv:1510.00296 [math-ph], 2015.

    [11]

    F. Bullo and A. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, Springer Verlag, New York, 2005.doi: 10.1007/978-1-4899-7276-7.

    [12]

    C. Burnett, D. Holm and D. Meier, Geometric integrators for higher-order mechanics on Lie groups, Proc. R. Soc. A., 469 (2013), 20130249.doi: 10.1098/rspa.2013.0249.

    [13]

    J. A. Cadzow, Discrete Calculus of Variations, Int. J. Control, 11 (1970), 393-407.doi: 10.1080/00207177008905922.

    [14]

    M. Camarinha, P. Crouch and F. Silva-Leite, Splines of class $C^k$ on non-Euclidean spaces, IMA J. Math. Control Info., 12 (1995), 399-410.doi: 10.1093/imamci/12.4.399.

    [15]

    D. Chang and J. Marsden, Asymptotic stabilization of the heavy top using controlled Lagrangians, Proceedings of the 39th IEEE Conference on Decision and Control, (2000), 269-273.doi: 10.1109/CDC.2000.912771.

    [16]

    L. Colombo, Geometric and Numerical Methods For Optimal Control of Mechanical Systems, Ph.D Thesis, Instituto de Ciencias Matemáticas, ICMAT (CSIC-UAM-UCM-UC3M), 2014.

    [17]

    L. Colombo, S. Ferraro and D. Martín de Diego, Geometric integrators for higher-order variational systems and their application to optimal control, Preprint, available at arXiv:1410.5766, (2014).doi: 10.1007/s00332-016-9314-9.

    [18]

    L. Colombo and D. Martín de Diego, Second-order constrained variational problems on Lie algebroids, Preprint, 2016, 47p. Available for private distribution.

    [19]

    L. Colombo, D. Martín de Diego and M. Zuccalli, Optimal control of underactuated mechanical systems: A geometrical approach, Journal Mathematical Physics, 51 (2010), 083519.doi: 10.1063/1.3456158.

    [20]

    L. Colombo and D. Martín de Diego, Quasivelocities and Optimal Control of Underactuated Mechanical Systems, Geometry and Physics: XVIII Fall Workshop on Geometry and Physics, AIP Conference Proceedings, 1260, 133-140, 2010.

    [21]

    L. Colombo and D. Martín de Diego, Higher-order variational problems on Lie groups and optimal control applications, J. Geom. Mech., 6 (2014), 451-478.doi: 10.3934/jgm.2014.6.451.

    [22]

    L. Colombo, F. Jimenez and D. Martín de Diego, Discrete second-order Euler-Poincaré equations. An application to optimal control, International Journal of Geometric Methods in Modern Physics, 9 (2012).doi: 10.1142/S0219887812500375.

    [23]

    J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 213-271.doi: 10.3934/dcds.2009.24.213.

    [24]

    J. Cortés and E. Martínez, Mechanical control systems on Lie algebroids, SIAM J. Control Optim., 41 (2002), 1389-1412.

    [25]

    A. Coste, P. Dazord and A. Weinstein, Grupoïdes symplectiques, Pub. Dep. Math. Lyon, 2/A (1987), 1-62.

    [26]

    P. Crouch and P. Silva Leite, The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces, J. Dynam. Control Systems, 1 (1995), 177-202.doi: 10.1007/BF02254638.

    [27]

    F. Gay-Balmaz, D. D Holm, D. Meier, T. Ratiu and F. Vialard, Invariant higher-order variational problems, Communications in Mathematical Physics, 309 (2012), 413-458.doi: 10.1007/s00220-011-1313-y.

    [28]

    F. Gay-Balmaz, D. D. Holm, D. Meier, T. Ratiu, F. Vialard, Invariant higher-order variational problems II, Journal of Nonlinear Science, 22 (2012), 553-597.doi: 10.1007/s00332-012-9137-2.

    [29]

    F. Gay-Balmaz, D. D. Holm and T. Ratiu, Higher-order Lagrange-Poincaré and Hamilton-Poincaré reductions, Bulletin of the Brazilian Math. Soc., 42 (2011), 579-606.doi: 10.1007/s00574-011-0030-7.

    [30]

    Z. Ge and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A, 133 (1988), 134-139.doi: 10.1016/0375-9601(88)90773-6.

    [31]

    E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2002.doi: 10.1007/978-3-662-05018-7.

    [32]

    P. Higgins and K. Mackenzie, Algebraic constructions in the category of Lie algebroids, J. Algebra, 129 (1990), 194-230.doi: 10.1016/0021-8693(90)90246-K.

    [33]

    D. D. Holm, T. Schamah and C. Stoica, Geometry Mechanics and Symmetry, Oxford Text in Applied Mathematics, 2009.

    [34]

    D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martinez, Discrete nonholonomic Lagrangian systems on Lie groupoids, Journal of Nonlinear Science, 18 (2008), 221-276.doi: 10.1007/s00332-007-9012-8.

    [35]

    D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dyn. Syst., 23 (2008), 351-397.doi: 10.1080/14689360802294220.

    [36]

    D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Padrón, Discrete dynamics in implicit form, Discrete and Continuous Dynamical Systems - Series A, 33 (2013), 1117-1135.doi: 10.3934/dcds.2013.33.1117.

    [37]

    A. Iserles, H. Munthe-Kaas, S. Norsett and A. Zanna, Lie-group methods, Acta Numerica, (2005).doi: 10.1017/S0962492900002154.

    [38]

    M. Jóźwikowski and M. Rotkiewicz, Bundle-theoretic methods for higher-order variational calculus, J. Geom. Mech. 6 (2014), 99-120.doi: 10.3934/jgm.2014.6.99.

    [39]

    M. Kobilarov and J. Marsden, Discrete geometric optimal control on Lie groups, to appear in IEEE Transactions on Robotics, 2010.doi: 10.1109/TRO.2011.2139130.

    [40]

    M. Kobilarov, Discrete Geometric Motion Control of Autonomous Vehicles, PhD thesis, University of Southern California, 2008.

    [41]

    T. Lee, M. Leok and N. McClamroch, Optimal Attitude Control of a Rigid Body using Geometrically Exact Computations on $SO(3)$, Journal of Dynamical and Control Systems, 14 (2008), 465-487.doi: 10.1007/s10883-008-9047-7.

    [42]

    T. Lee, N. H. McClamroch and M. Leok, Attitude maneuvers of a rigid spacecraft in a circular orbit, In American Control Conference, Minneapolis, Minnesota, USA, 1742-1747, 2006.

    [43]

    M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland Mathematical Studies 112, North-Holland, Amsterdam, 1985.

    [44]

    M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A, 2005.

    [45]

    L. Machado, F. Silva Leite and K. Krakowski, Higher-order smoothing splines versus least squares problems on Riemannian manifolds, J. Dyn. Control Syst., 16 (2010), 121-148.doi: 10.1007/s10883-010-9080-1.

    [46]

    K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical society Lecture Notes, 213, Cambridge University Press, 2005.doi: 10.1017/CBO9781107325883.

    [47]

    J. C. Marrero, E. Martínez and D. Martín de Diego, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348.doi: 10.1088/0951-7715/19/6/006.

    [48]

    J. C. Marrero, E. Martínez and D Martín de Diego, The local description of discrete mechanics, Geometry, Mechanics and Dynamics. Fields Institute Communications, (2015), 285-317.doi: 10.1007/978-1-4939-2441-7_13.

    [49]

    J. C. Marrero, D. Martín de Diego and A. Stern, Symplectic groupoids and discrete constrained Lagrangian mechanics, Discrete and Continuous Mechanical Systems, Serie A, 35 (2015), 367-397.

    [50]

    E. Martínez, Variational calculus on Lie algebroids, ESAIM: Control, Optimisation and Calculus of Variations, 14 (2008), 356-380.doi: 10.1051/cocv:2007056.

    [51]

    E. Martínez, Geometric formulation of mechanics on Lie algebroids, In Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, (1999), Publicaciones de la RSME, 2, 209-222, (2001).

    [52]

    E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320.doi: 10.1023/A:1011965919259.

    [53]

    E. Martínez, Higher-order variational calculus on Lie algebroids, J. Geometric Mechanics, 7 (2015), 81-108.doi: 10.3934/jgm.2015.7.81.

    [54]

    E. Martínez and J. Cortés, Lie algebroids in classical mechanics and optimal control, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 050.doi: 10.3842/SIGMA.2007.050.

    [55]

    J. E. Marsden, S. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie- Poisson equations, Nonlinearity, 12 (1999), 1647-1662.doi: 10.1088/0951-7715/12/6/314.

    [56]

    J. E. Marsden, S. Pekarsky and S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, J. Geom. Phys., 36 (1999).doi: 10.1016/S0393-0440(00)00018-8.

    [57]

    M. Marsden and M. West, Discrete Mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.doi: 10.1017/S096249290100006X.

    [58]

    D. Meier, Invariant Higher-Order Variational Problems: Reduction, Geometry and Applications, Ph.D Thesis, Imperial College London, 2013.

    [59]

    J. Moser and A. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243.

    [60]

    L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces, IMA J. Math. Control Inform., 6 (1989), 465-473.doi: 10.1093/imamci/6.4.465.

    [61]

    P. D. Prieto-Martínez and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for autonomous higher-order dynamical systems, J. Phys. A, 44 (2011), 385203.doi: 10.1088/1751-8113/44/38/385203.

    [62]

    D. Saunders, Prolongations of Lie groupoids and Lie algebroids, Houston J. Math., 30 (2004), 637-655.

    [63]

    J. Sniatycki and W. M. Tulczyjew, Generating forms of Lagrangian submanifolds, Indiana Univ. Math. J., 22 (1972).doi: 10.1512/iumj.1973.22.22021.

    [64]

    WM. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, C. R. Acad. Sc. Paris, Série A, 283 (1976), 15-18

    [65]

    WM. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sc. Paris, Série A, 283 (1976), 675-678.

    [66]

    J. Moser and A. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243.doi: 10.1007/BF02352494.

    [67]

    A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math Soc. Japan, 40 (1988), 705-727.doi: 10.2969/jmsj/04040705.

    [68]

    A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Comm., 7 (1996), 207-231.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(96) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return