-
Previous Article
Quasi-stability property and attractors for a semilinear Timoshenko system
- DCDS Home
- This Issue
-
Next Article
Differential geometry of rigid bodies collisions and non-standard billiards
The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations
1. | Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University, Cekmekoy 34794, Istanbul, Turkey, Turkey |
2. | Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey |
References:
[1] |
A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system, Advances in Differential Equations, 11 (2006), 121-166. |
[2] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci., 272 (1972), 47-78.
doi: 10.1098/rsta.1972.0032. |
[3] |
J. L. Bona, T. Colin and D. Lannes, Long wave approximations for water waves, Arch. Rational Mech. Anal., 178 (2005), 373-410.
doi: 10.1007/s00205-005-0378-1. |
[4] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[5] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[6] |
A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. A, 457 (2001), 953-970.
doi: 10.1098/rspa.2000.0701. |
[7] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[8] |
A. Constantin and L. Molinet, The initial value problem for a generalized Boussinesq equation, Differential and Integral Equations, 15 (2002), 1061-1072. |
[9] |
N. Duruk, A. Erkip and H. A. Erbay, A higher-order Boussinesq equation in locally nonlinear theory of one-dimensional nonlocal elasticity, IMA J. Appl. Math., 74 (2009), 97-106.
doi: 10.1093/imamat/hxn020. |
[10] |
N. Duruk, H.A. Erbay and A. Erkip, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity, Nonlinearity, 23 (2010), 107-118.
doi: 10.1088/0951-7715/23/1/006. |
[11] |
H. A. Erbay, S. Erbay and A. Erkip, Derivation of the Camassa-Holm equations for elastic waves, Physics Letters A, 379 (2015), 956-961.
doi: 10.1016/j.physleta.2015.01.031. |
[12] |
H. A. Erbay, S. Erbay and A. Erkip, Unidirectional wave motion in a nonlocally and nonlinearly elastic medium: The KdV, BBM and CH equations, Proceedings of the Estonian Academy of Sciences, 64 (2015), 256-262.
doi: 10.3176/proc.2015.3.08. |
[13] |
T. Gallay and G. Schneider, KP description of unidirectional long waves. The model case, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 885-898.
doi: 10.1017/S0308210500001165. |
[14] |
D. Ionescu-Kruse, Variational derivation of the Camassa-Holm shallow water equation, J. Non-linear Math. Phys., 14 (2007), 303-312.
doi: 10.2991/jnmp.2007.14.3.1. |
[15] |
R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: 10.1017/S0022112001007224. |
[16] |
D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves, Phil. Mag., 39 (1895), 422-443. |
[17] |
D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics, AMS Mathematical Surveys and Monographs, vol. 188, American Mathematical Society, Providence, RI, 2013.
doi: 10.1090/surv/188. |
[18] |
G. Schneider, The long wave limit for a Boussinesq equation, SIAM J. Appl. Math., 58 (1998), 1237-1245.
doi: 10.1137/S0036139995287946. |
show all references
References:
[1] |
A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system, Advances in Differential Equations, 11 (2006), 121-166. |
[2] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci., 272 (1972), 47-78.
doi: 10.1098/rsta.1972.0032. |
[3] |
J. L. Bona, T. Colin and D. Lannes, Long wave approximations for water waves, Arch. Rational Mech. Anal., 178 (2005), 373-410.
doi: 10.1007/s00205-005-0378-1. |
[4] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[5] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[6] |
A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. A, 457 (2001), 953-970.
doi: 10.1098/rspa.2000.0701. |
[7] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[8] |
A. Constantin and L. Molinet, The initial value problem for a generalized Boussinesq equation, Differential and Integral Equations, 15 (2002), 1061-1072. |
[9] |
N. Duruk, A. Erkip and H. A. Erbay, A higher-order Boussinesq equation in locally nonlinear theory of one-dimensional nonlocal elasticity, IMA J. Appl. Math., 74 (2009), 97-106.
doi: 10.1093/imamat/hxn020. |
[10] |
N. Duruk, H.A. Erbay and A. Erkip, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity, Nonlinearity, 23 (2010), 107-118.
doi: 10.1088/0951-7715/23/1/006. |
[11] |
H. A. Erbay, S. Erbay and A. Erkip, Derivation of the Camassa-Holm equations for elastic waves, Physics Letters A, 379 (2015), 956-961.
doi: 10.1016/j.physleta.2015.01.031. |
[12] |
H. A. Erbay, S. Erbay and A. Erkip, Unidirectional wave motion in a nonlocally and nonlinearly elastic medium: The KdV, BBM and CH equations, Proceedings of the Estonian Academy of Sciences, 64 (2015), 256-262.
doi: 10.3176/proc.2015.3.08. |
[13] |
T. Gallay and G. Schneider, KP description of unidirectional long waves. The model case, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 885-898.
doi: 10.1017/S0308210500001165. |
[14] |
D. Ionescu-Kruse, Variational derivation of the Camassa-Holm shallow water equation, J. Non-linear Math. Phys., 14 (2007), 303-312.
doi: 10.2991/jnmp.2007.14.3.1. |
[15] |
R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: 10.1017/S0022112001007224. |
[16] |
D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves, Phil. Mag., 39 (1895), 422-443. |
[17] |
D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics, AMS Mathematical Surveys and Monographs, vol. 188, American Mathematical Society, Providence, RI, 2013.
doi: 10.1090/surv/188. |
[18] |
G. Schneider, The long wave limit for a Boussinesq equation, SIAM J. Appl. Math., 58 (1998), 1237-1245.
doi: 10.1137/S0036139995287946. |
[1] |
H. A. Erbay, S. Erbay, A. Erkip. On the decoupling of the improved Boussinesq equation into two uncoupled Camassa-Holm equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3111-3122. doi: 10.3934/dcds.2017133 |
[2] |
Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243 |
[3] |
Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067 |
[4] |
Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065 |
[5] |
Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047 |
[6] |
Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883 |
[7] |
Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871 |
[8] |
Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159 |
[9] |
Yonghui Zhou, Shuguan Ji. Wave breaking phenomena and global existence for the weakly dissipative generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2022, 21 (2) : 555-566. doi: 10.3934/cpaa.2021188 |
[10] |
Aiyong Chen, Xinhui Lu. Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1703-1735. doi: 10.3934/dcds.2020090 |
[11] |
Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029 |
[12] |
Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230 |
[13] |
Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713 |
[14] |
Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic and Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305 |
[15] |
Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026 |
[16] |
Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181 |
[17] |
Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483 |
[18] |
Priscila Leal da Silva, Igor Leite Freire. An equation unifying both Camassa-Holm and Novikov equations. Conference Publications, 2015, 2015 (special) : 304-311. doi: 10.3934/proc.2015.0304 |
[19] |
Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194 |
[20] |
David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]