• Previous Article
    Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential
  • DCDS Home
  • This Issue
  • Next Article
    The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations
November  2016, 36(11): 6117-6132. doi: 10.3934/dcds.2016067

Quasi-stability property and attractors for a semilinear Timoshenko system

1. 

Department of Mathematics, State University of Londrina, Londrina PR, 86057-970, Brazil, Brazil

2. 

Center of exact sciences, State University of Mato Grosso do Sul, Dourados, 79804-970

Received  December 2015 Revised  February 2016 Published  August 2016

This paper is concerned with the classical Timoshenko system for vibrations of thin rods. It has been studied by many authors and most of known results are concerned with decay rates of the energy, controllability and numerical approximations. There are just a few references on the long-time dynamics of such systems. Motivated by this scenario we establish the existence of global and exponential attractors for a class of semilinear Timoshenko systems with linear frictional damping acting on the whole system and without assuming the well-known equal wave speeds condition.
Citation: Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067
References:
[1]

F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control,, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 643.  doi: 10.1007/s00030-007-5033-0.  Google Scholar

[2]

D. S. Almeida Júnior, J. E. Muñoz Rivera and M. L. Santos, The stability number of the Timoshenko system with second sound,, J. Differential Equations, 253 (2012), 2715.  doi: 10.1016/j.jde.2012.07.012.  Google Scholar

[3]

D. S. Almeida Júnior, J. E. Muñoz Rivera and M. L. Santos, Stability to weakly dissipative Timoshenko systems,, Math. Meth. Appl. Sci., 36 (2013), 1965.  doi: 10.1002/mma.2741.  Google Scholar

[4]

F. Ammar-Khodja, S. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam,, J. Math. Anal. Appl., 327 (2007), 525.  doi: 10.1016/j.jmaa.2006.04.016.  Google Scholar

[5]

F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type,, J. Differential Equations, 194 (2003), 82.  doi: 10.1016/S0022-0396(03)00185-2.  Google Scholar

[6]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Application 25, (1992).   Google Scholar

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcão Nascimento, I. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping,, Z. Angew. Math. Phys., 65 (2014), 1189.  doi: 10.1007/s00033-013-0380-7.  Google Scholar

[8]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping,, Mem. Amer. Math. Soc. 195, (2008).  doi: 10.1090/memo/0912.  Google Scholar

[9]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics,, Springer Monographs in Mathematics, (2010).  doi: 10.1007/978-0-387-87712-9.  Google Scholar

[10]

F. Dell'Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law,, J. Differential Equations, 257 (2014), 523.  doi: 10.1016/j.jde.2014.04.009.  Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, RAM: Research in Applied Mathematics, (1994).   Google Scholar

[12]

D-X Feng and D-H Shi, Exponential decay of Timoshenko beam with locally distributed feedback,, IMA J. Math. Control Inform., 18 (2001), 395.  doi: 10.1093/imamci/18.3.395.  Google Scholar

[13]

L. H. Fatori, R. N. Monteiro and H. D. Fernández Sare, The Timoshenko system with history and Cattaneo law,, Appl. Math. Comput., 228 (2014), 128.  doi: 10.1016/j.amc.2013.11.054.  Google Scholar

[14]

L. H. Fatori, R. N. Monteiro and J. E. Muñoz Rivera, Energy decay to Timoshenko's system with thermoelasticity of type III,, Asymptot. Anal., 86 (2014), 227.   Google Scholar

[15]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law,, Arch. Ration. Mech. Anal., 194 (2009), 221.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[16]

M. Grasselli, V. Pata and G. Prouse, Longtime behavior of a viscoelastic Timoshenko beam,, Discrete Contin. Dyn. Syst., 10 (2004), 337.  doi: 10.3934/dcds.2004.10.337.  Google Scholar

[17]

A. Guesmia and S. A. Messaoudi, A general stability result in a Timoshenko system with infinite memory: a new approach,, Math. Methods Appl. Sci., 37 (2014), 384.  doi: 10.1002/mma.2797.  Google Scholar

[18]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs, (1988).   Google Scholar

[19]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams,, Discrete Contin. Dyn. Syst., 35 (2015), 985.  doi: 10.3934/dcds.2015.35.985.  Google Scholar

[20]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam,, SIAM J. Control Optim., 25 (1987), 1417.  doi: 10.1137/0325078.  Google Scholar

[21]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248.  doi: 10.1016/S0022-247X(02)00436-5.  Google Scholar

[22]

J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems,, Discrete Contin. Dyn. Syst., 9 (2003), 1625.  doi: 10.3934/dcds.2003.9.1625.  Google Scholar

[23]

J. E. Muñoz Rivera and R. Racke, Timoshenko systems with indefinite damping,, J. Math. Anal. Appl., 341 (2008), 1068.  doi: 10.1016/j.jmaa.2007.11.012.  Google Scholar

[24]

P. Olsson and G. Kristensson, Wave splitting of the Timoshenko beam equation in the time domain,, Z. Angew. Math. Phys., 45 (1994), 866.  doi: 10.1007/BF00952082.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences 44, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate,, Commun. Pure Appl. Anal., 9 (2010), 161.  doi: 10.3934/cpaa.2010.9.161.  Google Scholar

[27]

C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings,, Appl. Math. Lett., 18 (2005), 535.  doi: 10.1016/j.aml.2004.03.017.  Google Scholar

[28]

D. H. Shi and D. X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback,, in Proceeding of the IFAC World Congress, (1999).  doi: 10.1093/imamci/18.3.395.  Google Scholar

[29]

A. Soufyane, Stabilisation de la poutre de Timoshenko,, C. R. Acad. Sci. Paris, 328 (1999), 731.  doi: 10.1016/S0764-4442(99)80244-4.  Google Scholar

[30]

A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam,, Nonlinear Anal. Real World Appl., 10 (2009), 1016.  doi: 10.1016/j.nonrwa.2007.11.019.  Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences 68. Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[32]

S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars,, Philosophical Magazine, 41 (1921), 744.  doi: 10.1080/14786442108636264.  Google Scholar

[33]

S. P. Timoshenko, Vibration Problems in Engineering,, Van Nostrand, (1955).   Google Scholar

show all references

References:
[1]

F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control,, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 643.  doi: 10.1007/s00030-007-5033-0.  Google Scholar

[2]

D. S. Almeida Júnior, J. E. Muñoz Rivera and M. L. Santos, The stability number of the Timoshenko system with second sound,, J. Differential Equations, 253 (2012), 2715.  doi: 10.1016/j.jde.2012.07.012.  Google Scholar

[3]

D. S. Almeida Júnior, J. E. Muñoz Rivera and M. L. Santos, Stability to weakly dissipative Timoshenko systems,, Math. Meth. Appl. Sci., 36 (2013), 1965.  doi: 10.1002/mma.2741.  Google Scholar

[4]

F. Ammar-Khodja, S. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam,, J. Math. Anal. Appl., 327 (2007), 525.  doi: 10.1016/j.jmaa.2006.04.016.  Google Scholar

[5]

F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type,, J. Differential Equations, 194 (2003), 82.  doi: 10.1016/S0022-0396(03)00185-2.  Google Scholar

[6]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Application 25, (1992).   Google Scholar

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcão Nascimento, I. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping,, Z. Angew. Math. Phys., 65 (2014), 1189.  doi: 10.1007/s00033-013-0380-7.  Google Scholar

[8]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping,, Mem. Amer. Math. Soc. 195, (2008).  doi: 10.1090/memo/0912.  Google Scholar

[9]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics,, Springer Monographs in Mathematics, (2010).  doi: 10.1007/978-0-387-87712-9.  Google Scholar

[10]

F. Dell'Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law,, J. Differential Equations, 257 (2014), 523.  doi: 10.1016/j.jde.2014.04.009.  Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, RAM: Research in Applied Mathematics, (1994).   Google Scholar

[12]

D-X Feng and D-H Shi, Exponential decay of Timoshenko beam with locally distributed feedback,, IMA J. Math. Control Inform., 18 (2001), 395.  doi: 10.1093/imamci/18.3.395.  Google Scholar

[13]

L. H. Fatori, R. N. Monteiro and H. D. Fernández Sare, The Timoshenko system with history and Cattaneo law,, Appl. Math. Comput., 228 (2014), 128.  doi: 10.1016/j.amc.2013.11.054.  Google Scholar

[14]

L. H. Fatori, R. N. Monteiro and J. E. Muñoz Rivera, Energy decay to Timoshenko's system with thermoelasticity of type III,, Asymptot. Anal., 86 (2014), 227.   Google Scholar

[15]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law,, Arch. Ration. Mech. Anal., 194 (2009), 221.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[16]

M. Grasselli, V. Pata and G. Prouse, Longtime behavior of a viscoelastic Timoshenko beam,, Discrete Contin. Dyn. Syst., 10 (2004), 337.  doi: 10.3934/dcds.2004.10.337.  Google Scholar

[17]

A. Guesmia and S. A. Messaoudi, A general stability result in a Timoshenko system with infinite memory: a new approach,, Math. Methods Appl. Sci., 37 (2014), 384.  doi: 10.1002/mma.2797.  Google Scholar

[18]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs, (1988).   Google Scholar

[19]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams,, Discrete Contin. Dyn. Syst., 35 (2015), 985.  doi: 10.3934/dcds.2015.35.985.  Google Scholar

[20]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam,, SIAM J. Control Optim., 25 (1987), 1417.  doi: 10.1137/0325078.  Google Scholar

[21]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248.  doi: 10.1016/S0022-247X(02)00436-5.  Google Scholar

[22]

J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems,, Discrete Contin. Dyn. Syst., 9 (2003), 1625.  doi: 10.3934/dcds.2003.9.1625.  Google Scholar

[23]

J. E. Muñoz Rivera and R. Racke, Timoshenko systems with indefinite damping,, J. Math. Anal. Appl., 341 (2008), 1068.  doi: 10.1016/j.jmaa.2007.11.012.  Google Scholar

[24]

P. Olsson and G. Kristensson, Wave splitting of the Timoshenko beam equation in the time domain,, Z. Angew. Math. Phys., 45 (1994), 866.  doi: 10.1007/BF00952082.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences 44, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate,, Commun. Pure Appl. Anal., 9 (2010), 161.  doi: 10.3934/cpaa.2010.9.161.  Google Scholar

[27]

C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings,, Appl. Math. Lett., 18 (2005), 535.  doi: 10.1016/j.aml.2004.03.017.  Google Scholar

[28]

D. H. Shi and D. X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback,, in Proceeding of the IFAC World Congress, (1999).  doi: 10.1093/imamci/18.3.395.  Google Scholar

[29]

A. Soufyane, Stabilisation de la poutre de Timoshenko,, C. R. Acad. Sci. Paris, 328 (1999), 731.  doi: 10.1016/S0764-4442(99)80244-4.  Google Scholar

[30]

A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam,, Nonlinear Anal. Real World Appl., 10 (2009), 1016.  doi: 10.1016/j.nonrwa.2007.11.019.  Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences 68. Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[32]

S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars,, Philosophical Magazine, 41 (1921), 744.  doi: 10.1080/14786442108636264.  Google Scholar

[33]

S. P. Timoshenko, Vibration Problems in Engineering,, Van Nostrand, (1955).   Google Scholar

[1]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[2]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[5]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[6]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[9]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[10]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[11]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[12]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006

[13]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[14]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[15]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[16]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[17]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[18]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[19]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[20]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (7)

[Back to Top]