November  2016, 36(11): 6167-6185. doi: 10.3934/dcds.2016069

An infinite-dimensional weak KAM theory via random variables

1. 

4700 King Abdullah University of Science and Technology (KAUST), CEMSE Division, Thuwal 23955-6900, Saudi Arabia, Saudi Arabia

Received  August 2015 Revised  July 2016 Published  August 2016

We develop several aspects of the infinite-dimensional Weak KAM theory using a random variables' approach. We prove that the infinite-dimensional cell problem admits a viscosity solution that is a fixed point of the Lax-Oleinik semigroup. Furthermore, we show the existence of invariant minimizing measures and calibrated curves defined on $\mathbb{R}$.
Citation: Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,, $2^{nd}$ edition, (2008).   Google Scholar

[2]

V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian,, Uspehi Mat. Nauk, 18 (1963), 13.   Google Scholar

[3]

V. I. Arnol'd, Mathematical Models of Classical Mechanics,, (Translated from the Russian by K. Vogtmann and A. Weinstein) Springer-Verlag, (1978).   Google Scholar

[4]

V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, Dynamical Systems. III,, (Translated from the Russian by A. Iacob) Springer-Verlag, (1988).  doi: 10.1007/978-3-642-61551-1.  Google Scholar

[5]

E. Asplund, Fréchet differentiability of convex functions,, Acta Math., 121 (1968), 31.  doi: 10.1007/BF02391908.  Google Scholar

[6]

M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations,, Birkhäuser Boston Inc., (1997).  doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[7]

G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi,, (French) [Viscosity Solutions of Hamilton-Jacobi Equations], (1994).   Google Scholar

[8]

P. Bernard, Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds},, Ann. Sci. École Norm. Sup. (4), 40 (2007), 445.  doi: 10.1016/j.ansens.2007.01.004.  Google Scholar

[9]

P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation,, Math. Res. Lett., 14 (2007), 503.  doi: 10.4310/MRL.2007.v14.n3.a14.  Google Scholar

[10]

P. Bernard, The Lax-Oleinik semi-group: A Hamiltonian point of view,, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1131.  doi: 10.1017/S0308210511000059.  Google Scholar

[11]

U. Bessi, Chaotic motions for a version of the Vlasov equation,, SIAM J. Math. Anal., 44 (2012), 2496.  doi: 10.1137/110851225.  Google Scholar

[12]

U. Bessi, The Aubry set for a version of the Vlasov equation,, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1411.  doi: 10.1007/s00030-012-0216-8.  Google Scholar

[13]

U. Bessi, A time-step approximation scheme for a viscous version of the Vlasov equation,, Adv. Math., 266 (2014), 17.  doi: 10.1016/j.aim.2014.07.023.  Google Scholar

[14]

U. Bessi, Viscous Aubry-Mather theory and the Vlasov equation,, Discrete Contin. Dyn. Syst., 34 (2014), 379.  doi: 10.3934/dcds.2014.34.379.  Google Scholar

[15]

W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles,, Comm. Math. Phys., 56 (1977), 101.  doi: 10.1007/BF01611497.  Google Scholar

[16]

P. Cardaliaguet, Notes on Mean Field Games (from P. L. Lions' lectures at Collège de France),, 2012. Available from: , ().   Google Scholar

[17]

M. G. Crandall and P. L. Lions, Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions,, J. Funct. Anal., 65 (1986), 368.  doi: 10.1016/0022-1236(86)90026-1.  Google Scholar

[18]

R. L. Dobrušin, Vlasov equations,, (Russian) Funktsional. Anal. i Prilozhen., 13 (1979), 48.   Google Scholar

[19]

A. Fathi, Weak KAM Theorem in Lagrangian Dynamics,, (to appear in Cambridge Studies in Advanced Mathematics)., ().   Google Scholar

[20]

A. Fathi, Solutions {KAM} faibles conjuguées et barrières de Peierls,, (French) [Weakly conjugate KAM solutions and Peierls's barriers], 325 (1997), 649.  doi: 10.1016/S0764-4442(97)84777-5.  Google Scholar

[21]

A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens,, (French) [A weak KAM theorem and Mather's theory of Lagrangian systems], 324 (1997), 1043.  doi: 10.1016/S0764-4442(97)87883-4.  Google Scholar

[22]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik,, (French) [Convergence of the Lax-Oleinik semigroup], 327 (1998), 267.  doi: 10.1016/S0764-4442(98)80144-4.  Google Scholar

[23]

A. Fathi, On existence of smooth critical subsolutions of the Hamilton-Jacobi equation,, Publ. Mat. Urug., 12 (2011), 87.   Google Scholar

[24]

A. Fathi, A. Giuliani and A. Sorrentino, Uniqueness of invariant Lagrangian graphs in a homology or a cohomology class,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8 (2009), 659.   Google Scholar

[25]

A. Fathi and E. Maderna, Weak KAM theorem on non compact manifolds,, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 1.  doi: 10.1007/s00030-007-2047-6.  Google Scholar

[26]

A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation,, Invent. Math., 155 (2004), 363.  doi: 10.1007/s00222-003-0323-6.  Google Scholar

[27]

A. Fathi and A. Siconolfi, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians,, Calc. Var. Partial Differential Equations, 22 (2005), 185.  doi: 10.1007/s00526-004-0271-z.  Google Scholar

[28]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Springer-Verlag, (1993).   Google Scholar

[29]

W. Gangbo and A. Tudorascu, Lagrangian dynamics on an infinite-dimensional torus; a weak KAM theorem,, Adv. Math., 224 (2010), 260.  doi: 10.1016/j.aim.2009.11.005.  Google Scholar

[30]

W. Gangbo and A. Tudorascu, A weak KAM theorem; from finite to infinite dimension,, in Optimal transportation, (2010), 45.   Google Scholar

[31]

W. Gangbo and A. Tudorascu, Weak KAM theory on the Wasserstein torus with multidimensional underlying space,, Comm. Pure Appl. Math., 67 (2014), 408.  doi: 10.1002/cpa.21492.  Google Scholar

[32]

D. Gomes, Hamilton Jacobi Equations, Viscosity Solutions and Asymptotics of Hamiltonian Systems,, Ph.D thesis, (2000).   Google Scholar

[33]

D. Gomes, Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems,, Calc. Var. Partial Differential Equations, 14 (2002), 345.  doi: 10.1007/s005260100106.  Google Scholar

[34]

D. Gomes, Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets,, SIAM J. Math. Anal., 35 (2003), 135.  doi: 10.1137/S0036141002405960.  Google Scholar

[35]

D. Gomes, Regularity theory for Hamilton-Jacobi equations,, J. Differential Equations, 187 (2003), 359.  doi: 10.1016/S0022-0396(02)00013-X.  Google Scholar

[36]

D. Gomes and L. Nurbekyan, On the minimizers of calculus of variations problems in Hilbert spaces,, Calc. Var. Partial Differential Equations, 52 (2015), 65.  doi: 10.1007/s00526-013-0705-6.  Google Scholar

[37]

H. Ishii, Viscosity solutions for a class of Hamilton-Jacobi equations in Hilbert spaces,, J. Funct. Anal., 105 (1992), 301.  doi: 10.1016/0022-1236(92)90081-S.  Google Scholar

[38]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function,, (Russian) Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527.   Google Scholar

[39]

P. L. Lions, Lectures on Mean Field Games., Available from: , ().   Google Scholar

[40]

P. L. Lions, G. Papanicolau and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations,, unpublished, (1987).   Google Scholar

[41]

V. P. Maslov, Equations of the self-consistent field,, in Current problems in mathematics, (1978), 153.   Google Scholar

[42]

G. J. Minty, On the monotonicity of the gradient of a convex function,, Pacific J. Math., 14 (1964), 243.  doi: 10.2140/pjm.1964.14.243.  Google Scholar

[43]

L. Nurbekyan, Weak KAM Theory on the $d$-infinite Dimensional Torus,, Ph.D thesis, (2012).   Google Scholar

[44]

D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms,, J. Math. Anal. Appl., 163 (1992), 345.  doi: 10.1016/0022-247X(92)90256-D.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,, $2^{nd}$ edition, (2008).   Google Scholar

[2]

V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian,, Uspehi Mat. Nauk, 18 (1963), 13.   Google Scholar

[3]

V. I. Arnol'd, Mathematical Models of Classical Mechanics,, (Translated from the Russian by K. Vogtmann and A. Weinstein) Springer-Verlag, (1978).   Google Scholar

[4]

V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, Dynamical Systems. III,, (Translated from the Russian by A. Iacob) Springer-Verlag, (1988).  doi: 10.1007/978-3-642-61551-1.  Google Scholar

[5]

E. Asplund, Fréchet differentiability of convex functions,, Acta Math., 121 (1968), 31.  doi: 10.1007/BF02391908.  Google Scholar

[6]

M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations,, Birkhäuser Boston Inc., (1997).  doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[7]

G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi,, (French) [Viscosity Solutions of Hamilton-Jacobi Equations], (1994).   Google Scholar

[8]

P. Bernard, Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds},, Ann. Sci. École Norm. Sup. (4), 40 (2007), 445.  doi: 10.1016/j.ansens.2007.01.004.  Google Scholar

[9]

P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation,, Math. Res. Lett., 14 (2007), 503.  doi: 10.4310/MRL.2007.v14.n3.a14.  Google Scholar

[10]

P. Bernard, The Lax-Oleinik semi-group: A Hamiltonian point of view,, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1131.  doi: 10.1017/S0308210511000059.  Google Scholar

[11]

U. Bessi, Chaotic motions for a version of the Vlasov equation,, SIAM J. Math. Anal., 44 (2012), 2496.  doi: 10.1137/110851225.  Google Scholar

[12]

U. Bessi, The Aubry set for a version of the Vlasov equation,, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1411.  doi: 10.1007/s00030-012-0216-8.  Google Scholar

[13]

U. Bessi, A time-step approximation scheme for a viscous version of the Vlasov equation,, Adv. Math., 266 (2014), 17.  doi: 10.1016/j.aim.2014.07.023.  Google Scholar

[14]

U. Bessi, Viscous Aubry-Mather theory and the Vlasov equation,, Discrete Contin. Dyn. Syst., 34 (2014), 379.  doi: 10.3934/dcds.2014.34.379.  Google Scholar

[15]

W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles,, Comm. Math. Phys., 56 (1977), 101.  doi: 10.1007/BF01611497.  Google Scholar

[16]

P. Cardaliaguet, Notes on Mean Field Games (from P. L. Lions' lectures at Collège de France),, 2012. Available from: , ().   Google Scholar

[17]

M. G. Crandall and P. L. Lions, Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions,, J. Funct. Anal., 65 (1986), 368.  doi: 10.1016/0022-1236(86)90026-1.  Google Scholar

[18]

R. L. Dobrušin, Vlasov equations,, (Russian) Funktsional. Anal. i Prilozhen., 13 (1979), 48.   Google Scholar

[19]

A. Fathi, Weak KAM Theorem in Lagrangian Dynamics,, (to appear in Cambridge Studies in Advanced Mathematics)., ().   Google Scholar

[20]

A. Fathi, Solutions {KAM} faibles conjuguées et barrières de Peierls,, (French) [Weakly conjugate KAM solutions and Peierls's barriers], 325 (1997), 649.  doi: 10.1016/S0764-4442(97)84777-5.  Google Scholar

[21]

A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens,, (French) [A weak KAM theorem and Mather's theory of Lagrangian systems], 324 (1997), 1043.  doi: 10.1016/S0764-4442(97)87883-4.  Google Scholar

[22]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik,, (French) [Convergence of the Lax-Oleinik semigroup], 327 (1998), 267.  doi: 10.1016/S0764-4442(98)80144-4.  Google Scholar

[23]

A. Fathi, On existence of smooth critical subsolutions of the Hamilton-Jacobi equation,, Publ. Mat. Urug., 12 (2011), 87.   Google Scholar

[24]

A. Fathi, A. Giuliani and A. Sorrentino, Uniqueness of invariant Lagrangian graphs in a homology or a cohomology class,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8 (2009), 659.   Google Scholar

[25]

A. Fathi and E. Maderna, Weak KAM theorem on non compact manifolds,, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 1.  doi: 10.1007/s00030-007-2047-6.  Google Scholar

[26]

A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation,, Invent. Math., 155 (2004), 363.  doi: 10.1007/s00222-003-0323-6.  Google Scholar

[27]

A. Fathi and A. Siconolfi, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians,, Calc. Var. Partial Differential Equations, 22 (2005), 185.  doi: 10.1007/s00526-004-0271-z.  Google Scholar

[28]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Springer-Verlag, (1993).   Google Scholar

[29]

W. Gangbo and A. Tudorascu, Lagrangian dynamics on an infinite-dimensional torus; a weak KAM theorem,, Adv. Math., 224 (2010), 260.  doi: 10.1016/j.aim.2009.11.005.  Google Scholar

[30]

W. Gangbo and A. Tudorascu, A weak KAM theorem; from finite to infinite dimension,, in Optimal transportation, (2010), 45.   Google Scholar

[31]

W. Gangbo and A. Tudorascu, Weak KAM theory on the Wasserstein torus with multidimensional underlying space,, Comm. Pure Appl. Math., 67 (2014), 408.  doi: 10.1002/cpa.21492.  Google Scholar

[32]

D. Gomes, Hamilton Jacobi Equations, Viscosity Solutions and Asymptotics of Hamiltonian Systems,, Ph.D thesis, (2000).   Google Scholar

[33]

D. Gomes, Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems,, Calc. Var. Partial Differential Equations, 14 (2002), 345.  doi: 10.1007/s005260100106.  Google Scholar

[34]

D. Gomes, Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets,, SIAM J. Math. Anal., 35 (2003), 135.  doi: 10.1137/S0036141002405960.  Google Scholar

[35]

D. Gomes, Regularity theory for Hamilton-Jacobi equations,, J. Differential Equations, 187 (2003), 359.  doi: 10.1016/S0022-0396(02)00013-X.  Google Scholar

[36]

D. Gomes and L. Nurbekyan, On the minimizers of calculus of variations problems in Hilbert spaces,, Calc. Var. Partial Differential Equations, 52 (2015), 65.  doi: 10.1007/s00526-013-0705-6.  Google Scholar

[37]

H. Ishii, Viscosity solutions for a class of Hamilton-Jacobi equations in Hilbert spaces,, J. Funct. Anal., 105 (1992), 301.  doi: 10.1016/0022-1236(92)90081-S.  Google Scholar

[38]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function,, (Russian) Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527.   Google Scholar

[39]

P. L. Lions, Lectures on Mean Field Games., Available from: , ().   Google Scholar

[40]

P. L. Lions, G. Papanicolau and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations,, unpublished, (1987).   Google Scholar

[41]

V. P. Maslov, Equations of the self-consistent field,, in Current problems in mathematics, (1978), 153.   Google Scholar

[42]

G. J. Minty, On the monotonicity of the gradient of a convex function,, Pacific J. Math., 14 (1964), 243.  doi: 10.2140/pjm.1964.14.243.  Google Scholar

[43]

L. Nurbekyan, Weak KAM Theory on the $d$-infinite Dimensional Torus,, Ph.D thesis, (2012).   Google Scholar

[44]

D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms,, J. Math. Anal. Appl., 163 (1992), 345.  doi: 10.1016/0022-247X(92)90256-D.  Google Scholar

[1]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[2]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[3]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[4]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[5]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[6]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[7]

Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167

[8]

David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205

[9]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[10]

Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793

[11]

Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649

[12]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[13]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[14]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[15]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[16]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[17]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[18]

Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223

[19]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[20]

Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]