-
Previous Article
Periodic points of latitudinal maps of the $m$-dimensional sphere
- DCDS Home
- This Issue
-
Next Article
Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential
An infinite-dimensional weak KAM theory via random variables
1. | 4700 King Abdullah University of Science and Technology (KAUST), CEMSE Division, Thuwal 23955-6900, Saudi Arabia, Saudi Arabia |
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, $2^{nd}$ edition, Birkhäuser Verlag, Basel, 2008. |
[2] |
V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40. |
[3] |
V. I. Arnol'd, Mathematical Models of Classical Mechanics, (Translated from the Russian by K. Vogtmann and A. Weinstein) Springer-Verlag, New York-Heidelberg, 1978. |
[4] |
V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, Dynamical Systems. III, (Translated from the Russian by A. Iacob) Springer-Verlag, Berlin, 1988.
doi: 10.1007/978-3-642-61551-1. |
[5] |
E. Asplund, Fréchet differentiability of convex functions, Acta Math., 121 (1968), 31-47.
doi: 10.1007/BF02391908. |
[6] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser Boston Inc., Boston, MA, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[7] |
G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi, (French) [Viscosity Solutions of Hamilton-Jacobi Equations], Springer-Verlag, Paris, 1994. |
[8] |
P. Bernard, Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds}, Ann. Sci. École Norm. Sup. (4), 40 (2007), 445-452.
doi: 10.1016/j.ansens.2007.01.004. |
[9] |
P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.
doi: 10.4310/MRL.2007.v14.n3.a14. |
[10] |
P. Bernard, The Lax-Oleinik semi-group: A Hamiltonian point of view, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1131-1177.
doi: 10.1017/S0308210511000059. |
[11] |
U. Bessi, Chaotic motions for a version of the Vlasov equation, SIAM J. Math. Anal., 44 (2012), 2496-2525.
doi: 10.1137/110851225. |
[12] |
U. Bessi, The Aubry set for a version of the Vlasov equation, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1411-1452.
doi: 10.1007/s00030-012-0216-8. |
[13] |
U. Bessi, A time-step approximation scheme for a viscous version of the Vlasov equation, Adv. Math., 266 (2014), 17-83.
doi: 10.1016/j.aim.2014.07.023. |
[14] |
U. Bessi, Viscous Aubry-Mather theory and the Vlasov equation, Discrete Contin. Dyn. Syst., 34 (2014), 379-420.
doi: 10.3934/dcds.2014.34.379. |
[15] |
W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles, Comm. Math. Phys., 56 (1977), 101-113.
doi: 10.1007/BF01611497. |
[16] |
P. Cardaliaguet, Notes on Mean Field Games (from P. L. Lions' lectures at Collège de France), 2012. Available from: https://www.ceremade.dauphine.fr/~cardalia/MFG20130420.pdf. |
[17] |
M. G. Crandall and P. L. Lions, Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions, J. Funct. Anal., 65 (1986), 368-405.
doi: 10.1016/0022-1236(86)90026-1. |
[18] |
R. L. Dobrušin, Vlasov equations, (Russian) Funktsional. Anal. i Prilozhen., 13 (1979), 48-58, 96. |
[19] |
A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, (to appear in Cambridge Studies in Advanced Mathematics). |
[20] |
A. Fathi, Solutions {KAM} faibles conjuguées et barrières de Peierls, (French) [Weakly conjugate KAM solutions and Peierls's barriers], C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 649-652.
doi: 10.1016/S0764-4442(97)84777-5. |
[21] |
A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, (French) [A weak KAM theorem and Mather's theory of Lagrangian systems], C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043-1046.
doi: 10.1016/S0764-4442(97)87883-4. |
[22] |
A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, (French) [Convergence of the Lax-Oleinik semigroup], C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.
doi: 10.1016/S0764-4442(98)80144-4. |
[23] |
A. Fathi, On existence of smooth critical subsolutions of the Hamilton-Jacobi equation, Publ. Mat. Urug., 12 (2011), 87-98. |
[24] |
A. Fathi, A. Giuliani and A. Sorrentino, Uniqueness of invariant Lagrangian graphs in a homology or a cohomology class, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8 (2009), 659-680. |
[25] |
A. Fathi and E. Maderna, Weak KAM theorem on non compact manifolds, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 1-27.
doi: 10.1007/s00030-007-2047-6. |
[26] |
A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.
doi: 10.1007/s00222-003-0323-6. |
[27] |
A. Fathi and A. Siconolfi, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians, Calc. Var. Partial Differential Equations, 22 (2005), 185-228.
doi: 10.1007/s00526-004-0271-z. |
[28] |
W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993. |
[29] |
W. Gangbo and A. Tudorascu, Lagrangian dynamics on an infinite-dimensional torus; a weak KAM theorem, Adv. Math., 224 (2010), 260-292.
doi: 10.1016/j.aim.2009.11.005. |
[30] |
W. Gangbo and A. Tudorascu, A weak KAM theorem; from finite to infinite dimension, in Optimal transportation, geometry and functional inequalities, Ed. Norm., Pisa, (2010), 45-72. |
[31] |
W. Gangbo and A. Tudorascu, Weak KAM theory on the Wasserstein torus with multidimensional underlying space, Comm. Pure Appl. Math., 67 (2014), 408-463.
doi: 10.1002/cpa.21492. |
[32] |
D. Gomes, Hamilton Jacobi Equations, Viscosity Solutions and Asymptotics of Hamiltonian Systems, Ph.D thesis, University of California at Berkeley, 2000. |
[33] |
D. Gomes, Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems, Calc. Var. Partial Differential Equations, 14 (2002), 345-357.
doi: 10.1007/s005260100106. |
[34] |
D. Gomes, Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets, SIAM J. Math. Anal., 35 (2003), 135-147.
doi: 10.1137/S0036141002405960. |
[35] |
D. Gomes, Regularity theory for Hamilton-Jacobi equations, J. Differential Equations, 187 (2003), 359-374.
doi: 10.1016/S0022-0396(02)00013-X. |
[36] |
D. Gomes and L. Nurbekyan, On the minimizers of calculus of variations problems in Hilbert spaces, Calc. Var. Partial Differential Equations, 52 (2015), 65-93.
doi: 10.1007/s00526-013-0705-6. |
[37] |
H. Ishii, Viscosity solutions for a class of Hamilton-Jacobi equations in Hilbert spaces, J. Funct. Anal., 105 (1992), 301-341.
doi: 10.1016/0022-1236(92)90081-S. |
[38] |
A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, (Russian) Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527-530. |
[39] |
P. L. Lions, Lectures on Mean Field Games. Available from: http://www.college-de-france.fr/site/en-pierre-louis-lions/index.htm. |
[40] |
P. L. Lions, G. Papanicolau and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, unpublished, (1987). Available from: https://www.scribd.com/doc/146255460/Lions-Papanicolaou-Varadhan-Homogenization-of-Hamilton-Jacobi-Equations. |
[41] |
V. P. Maslov, Equations of the self-consistent field, in Current problems in mathematics, (Russian) Akad. Nauk SSSR Vsesojuz. Inst. Nau\v cn. i Tehn. Informacii, Moscow, (1978), 153-234. |
[42] |
G. J. Minty, On the monotonicity of the gradient of a convex function, Pacific J. Math., 14 (1964), 243-247.
doi: 10.2140/pjm.1964.14.243. |
[43] |
L. Nurbekyan, Weak KAM Theory on the $d$-infinite Dimensional Torus, Ph.D thesis, Instituto Superior Técnico, 2012. |
[44] |
D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163 (1992), 345-392.
doi: 10.1016/0022-247X(92)90256-D. |
show all references
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, $2^{nd}$ edition, Birkhäuser Verlag, Basel, 2008. |
[2] |
V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40. |
[3] |
V. I. Arnol'd, Mathematical Models of Classical Mechanics, (Translated from the Russian by K. Vogtmann and A. Weinstein) Springer-Verlag, New York-Heidelberg, 1978. |
[4] |
V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, Dynamical Systems. III, (Translated from the Russian by A. Iacob) Springer-Verlag, Berlin, 1988.
doi: 10.1007/978-3-642-61551-1. |
[5] |
E. Asplund, Fréchet differentiability of convex functions, Acta Math., 121 (1968), 31-47.
doi: 10.1007/BF02391908. |
[6] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser Boston Inc., Boston, MA, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[7] |
G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi, (French) [Viscosity Solutions of Hamilton-Jacobi Equations], Springer-Verlag, Paris, 1994. |
[8] |
P. Bernard, Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds}, Ann. Sci. École Norm. Sup. (4), 40 (2007), 445-452.
doi: 10.1016/j.ansens.2007.01.004. |
[9] |
P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.
doi: 10.4310/MRL.2007.v14.n3.a14. |
[10] |
P. Bernard, The Lax-Oleinik semi-group: A Hamiltonian point of view, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1131-1177.
doi: 10.1017/S0308210511000059. |
[11] |
U. Bessi, Chaotic motions for a version of the Vlasov equation, SIAM J. Math. Anal., 44 (2012), 2496-2525.
doi: 10.1137/110851225. |
[12] |
U. Bessi, The Aubry set for a version of the Vlasov equation, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1411-1452.
doi: 10.1007/s00030-012-0216-8. |
[13] |
U. Bessi, A time-step approximation scheme for a viscous version of the Vlasov equation, Adv. Math., 266 (2014), 17-83.
doi: 10.1016/j.aim.2014.07.023. |
[14] |
U. Bessi, Viscous Aubry-Mather theory and the Vlasov equation, Discrete Contin. Dyn. Syst., 34 (2014), 379-420.
doi: 10.3934/dcds.2014.34.379. |
[15] |
W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles, Comm. Math. Phys., 56 (1977), 101-113.
doi: 10.1007/BF01611497. |
[16] |
P. Cardaliaguet, Notes on Mean Field Games (from P. L. Lions' lectures at Collège de France), 2012. Available from: https://www.ceremade.dauphine.fr/~cardalia/MFG20130420.pdf. |
[17] |
M. G. Crandall and P. L. Lions, Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions, J. Funct. Anal., 65 (1986), 368-405.
doi: 10.1016/0022-1236(86)90026-1. |
[18] |
R. L. Dobrušin, Vlasov equations, (Russian) Funktsional. Anal. i Prilozhen., 13 (1979), 48-58, 96. |
[19] |
A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, (to appear in Cambridge Studies in Advanced Mathematics). |
[20] |
A. Fathi, Solutions {KAM} faibles conjuguées et barrières de Peierls, (French) [Weakly conjugate KAM solutions and Peierls's barriers], C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 649-652.
doi: 10.1016/S0764-4442(97)84777-5. |
[21] |
A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, (French) [A weak KAM theorem and Mather's theory of Lagrangian systems], C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043-1046.
doi: 10.1016/S0764-4442(97)87883-4. |
[22] |
A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, (French) [Convergence of the Lax-Oleinik semigroup], C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.
doi: 10.1016/S0764-4442(98)80144-4. |
[23] |
A. Fathi, On existence of smooth critical subsolutions of the Hamilton-Jacobi equation, Publ. Mat. Urug., 12 (2011), 87-98. |
[24] |
A. Fathi, A. Giuliani and A. Sorrentino, Uniqueness of invariant Lagrangian graphs in a homology or a cohomology class, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8 (2009), 659-680. |
[25] |
A. Fathi and E. Maderna, Weak KAM theorem on non compact manifolds, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 1-27.
doi: 10.1007/s00030-007-2047-6. |
[26] |
A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.
doi: 10.1007/s00222-003-0323-6. |
[27] |
A. Fathi and A. Siconolfi, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians, Calc. Var. Partial Differential Equations, 22 (2005), 185-228.
doi: 10.1007/s00526-004-0271-z. |
[28] |
W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993. |
[29] |
W. Gangbo and A. Tudorascu, Lagrangian dynamics on an infinite-dimensional torus; a weak KAM theorem, Adv. Math., 224 (2010), 260-292.
doi: 10.1016/j.aim.2009.11.005. |
[30] |
W. Gangbo and A. Tudorascu, A weak KAM theorem; from finite to infinite dimension, in Optimal transportation, geometry and functional inequalities, Ed. Norm., Pisa, (2010), 45-72. |
[31] |
W. Gangbo and A. Tudorascu, Weak KAM theory on the Wasserstein torus with multidimensional underlying space, Comm. Pure Appl. Math., 67 (2014), 408-463.
doi: 10.1002/cpa.21492. |
[32] |
D. Gomes, Hamilton Jacobi Equations, Viscosity Solutions and Asymptotics of Hamiltonian Systems, Ph.D thesis, University of California at Berkeley, 2000. |
[33] |
D. Gomes, Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems, Calc. Var. Partial Differential Equations, 14 (2002), 345-357.
doi: 10.1007/s005260100106. |
[34] |
D. Gomes, Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets, SIAM J. Math. Anal., 35 (2003), 135-147.
doi: 10.1137/S0036141002405960. |
[35] |
D. Gomes, Regularity theory for Hamilton-Jacobi equations, J. Differential Equations, 187 (2003), 359-374.
doi: 10.1016/S0022-0396(02)00013-X. |
[36] |
D. Gomes and L. Nurbekyan, On the minimizers of calculus of variations problems in Hilbert spaces, Calc. Var. Partial Differential Equations, 52 (2015), 65-93.
doi: 10.1007/s00526-013-0705-6. |
[37] |
H. Ishii, Viscosity solutions for a class of Hamilton-Jacobi equations in Hilbert spaces, J. Funct. Anal., 105 (1992), 301-341.
doi: 10.1016/0022-1236(92)90081-S. |
[38] |
A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, (Russian) Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527-530. |
[39] |
P. L. Lions, Lectures on Mean Field Games. Available from: http://www.college-de-france.fr/site/en-pierre-louis-lions/index.htm. |
[40] |
P. L. Lions, G. Papanicolau and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, unpublished, (1987). Available from: https://www.scribd.com/doc/146255460/Lions-Papanicolaou-Varadhan-Homogenization-of-Hamilton-Jacobi-Equations. |
[41] |
V. P. Maslov, Equations of the self-consistent field, in Current problems in mathematics, (Russian) Akad. Nauk SSSR Vsesojuz. Inst. Nau\v cn. i Tehn. Informacii, Moscow, (1978), 153-234. |
[42] |
G. J. Minty, On the monotonicity of the gradient of a convex function, Pacific J. Math., 14 (1964), 243-247.
doi: 10.2140/pjm.1964.14.243. |
[43] |
L. Nurbekyan, Weak KAM Theory on the $d$-infinite Dimensional Torus, Ph.D thesis, Instituto Superior Técnico, 2012. |
[44] |
D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163 (1992), 345-392.
doi: 10.1016/0022-247X(92)90256-D. |
[1] |
Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 |
[2] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[3] |
Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683 |
[4] |
Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291 |
[5] |
Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121 |
[6] |
Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385 |
[7] |
Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647 |
[8] |
Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167 |
[9] |
David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 |
[10] |
Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389 |
[11] |
Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure and Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793 |
[12] |
Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649 |
[13] |
Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441 |
[14] |
Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513 |
[15] |
Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363 |
[16] |
Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461 |
[17] |
Gonzalo Dávila. Comparison principles for nonlocal Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022061 |
[18] |
Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317 |
[19] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[20] |
Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure and Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]