November  2016, 36(11): 6187-6199. doi: 10.3934/dcds.2016070

Periodic points of latitudinal maps of the $m$-dimensional sphere

1. 

Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

2. 

Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202

3. 

Sopot, Poland

Received  October 2015 Revised  June 2016 Published  August 2016

Let $f$ be a smooth self-map of the $m$-dimensional sphere $S^m$. Under the assumption that $f$ preserves latitudinal foliations with the fibres $S^1$, we estimate from below the number of fixed points of the iterates of $f$. The paper generalizes the results obtained by Pugh and Shub and by Misiurewicz.
Citation: Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070
References:
[1]

I. K. Babenko, S. A. Bogatyi, The behavior of the index of periodic points under iterations of a mapping,, Math. USSR Izv., 38 (1992), 1.   Google Scholar

[2]

G. Graff and J. Jezierski, On the growth of the number of periodic points for smooth self-maps of a compact manifold,, Proc. Amer. Math. Soc., 135 (2007), 3249.  doi: 10.1090/S0002-9939-07-08836-3.  Google Scholar

[3]

L. Hernández-Corbato and F. R. Ruiz del Portal, Fixed point indices of planar continuous maps,, Discrete Contin. Dyn. Syst., 35 (2015), 2979.  doi: 10.3934/dcds.2015.35.2979.  Google Scholar

[4]

B. J. Jiang, Lectures on the Nielsen Fixed Point Theory,, Contemp. Math. 14, 14 (1983).   Google Scholar

[5]

V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits,, Comm. Math. Phys., 211 (2000), 253.  doi: 10.1007/s002200050811.  Google Scholar

[6]

N. G. Lloyd, Degree Theory,, Cambridge Tracts in Mathematics, 73 (1978).   Google Scholar

[7]

M. Misiurewicz, Periodic points of latitudinal maps,, J. Fixed Point Theory Appl., 16 (2014), 149.  doi: 10.1007/s11784-014-0195-y.  Google Scholar

[8]

C. Pugh and M. Shub, Periodic points on the 2-sphere,, Discrete Contin. Dynam. Sys., 34 (2014), 1171.  doi: 10.3934/dcds.2014.34.1171.  Google Scholar

[9]

M. Shub, Alexander cocycles and dynamics,, Asterisque, 51 (1978), 395.   Google Scholar

[10]

M. Shub, All, most, some differentiable dynamical systems,, Proceedings of the International Congress of Mathematicians, (2006), 99.   Google Scholar

[11]

M. Shub, Dynamical systems, filtration and entropy,, Bull. Amer. Math. Soc., 80 (1974), 27.  doi: 10.1090/S0002-9904-1974-13344-6.  Google Scholar

[12]

M. Shub and P. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189.  doi: 10.1016/0040-9383(74)90009-3.  Google Scholar

show all references

References:
[1]

I. K. Babenko, S. A. Bogatyi, The behavior of the index of periodic points under iterations of a mapping,, Math. USSR Izv., 38 (1992), 1.   Google Scholar

[2]

G. Graff and J. Jezierski, On the growth of the number of periodic points for smooth self-maps of a compact manifold,, Proc. Amer. Math. Soc., 135 (2007), 3249.  doi: 10.1090/S0002-9939-07-08836-3.  Google Scholar

[3]

L. Hernández-Corbato and F. R. Ruiz del Portal, Fixed point indices of planar continuous maps,, Discrete Contin. Dyn. Syst., 35 (2015), 2979.  doi: 10.3934/dcds.2015.35.2979.  Google Scholar

[4]

B. J. Jiang, Lectures on the Nielsen Fixed Point Theory,, Contemp. Math. 14, 14 (1983).   Google Scholar

[5]

V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits,, Comm. Math. Phys., 211 (2000), 253.  doi: 10.1007/s002200050811.  Google Scholar

[6]

N. G. Lloyd, Degree Theory,, Cambridge Tracts in Mathematics, 73 (1978).   Google Scholar

[7]

M. Misiurewicz, Periodic points of latitudinal maps,, J. Fixed Point Theory Appl., 16 (2014), 149.  doi: 10.1007/s11784-014-0195-y.  Google Scholar

[8]

C. Pugh and M. Shub, Periodic points on the 2-sphere,, Discrete Contin. Dynam. Sys., 34 (2014), 1171.  doi: 10.3934/dcds.2014.34.1171.  Google Scholar

[9]

M. Shub, Alexander cocycles and dynamics,, Asterisque, 51 (1978), 395.   Google Scholar

[10]

M. Shub, All, most, some differentiable dynamical systems,, Proceedings of the International Congress of Mathematicians, (2006), 99.   Google Scholar

[11]

M. Shub, Dynamical systems, filtration and entropy,, Bull. Amer. Math. Soc., 80 (1974), 27.  doi: 10.1090/S0002-9904-1974-13344-6.  Google Scholar

[12]

M. Shub and P. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189.  doi: 10.1016/0040-9383(74)90009-3.  Google Scholar

[1]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[4]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[5]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[6]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[7]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (3)

[Back to Top]