\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential stabilization of a structure with interfacial slip

Abstract Related Papers Cited by
  • Two exponential stabilization results are proved for a vibrating structure subject to an interfacial slip. More precisely, the structure consists of two identical beams of Timoshenko type and clamped together but allowing for a longitudinal movement between the layers. We will stabilize the system through a transverse friction and also through a viscoelastic damping.
    Mathematics Subject Classification: 34B05, 34D05, 34H05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Ammar-Khodja, A. Benabdallah and J. E. M. Rivera, Energy decay for Timoshenko system of memory type, J. Diff. Eqs., 194 (2003), 82-11.doi: 10.1016/S0022-0396(03)00185-2.

    [2]

    C. F. Beards and I. M. A. Imam, The damping of plate vibration by interfacial slip between layers, Int. J. Mach. Tool. Des. Res., 18 (1978), 131-137.doi: 10.1016/0020-7357(78)90004-5.

    [3]

    X.-G. Cao, D.-Y. Liu and G.-Q. Xu, Easy test for stability of laminated beams with structural damping and boundary feedback controls, J. Dynamical Control Syst., 13 (2007), 313-336.doi: 10.1007/s10883-007-9022-8.

    [4]

    M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 24 (2001), 1043-1053.doi: 10.1002/mma.250.

    [5]

    M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Diff. Integral Eqs., 14 (2001), 85-116.

    [6]

    M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonl. Anal.: T. M. A., 68 (2008), 177-193.doi: 10.1016/j.na.2006.10.040.

    [7]

    M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 (2003), 1310-1324.doi: 10.1137/S0363012902408010.

    [8]

    M. De Lima Santos, Decay rates for solutions of a Timoshenko system with memory conditions at the boundary, Abstr. Appl. Anal., 7 (2002), 53-546.doi: 10.1155/S1085337502204133.

    [9]

    X. S. Han and M. X. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonl. Anal.: T. M. A., 70 (2009), 3090-3098.doi: 10.1016/j.na.2008.04.011.

    [10]

    S. W. Hansen and R. Spies, Structural damping in a laminated beam due to interfacial slip, J. Sound Vibration, 204 (1997), 183-202.doi: 10.1006/jsvi.1996.0913.

    [11]

    Z. Liu and C. Pang, Exponential stability of a viscoelastic Timoshenko beam, Adv. Math. Sci. Appl., 8 (1998), 343-351.

    [12]

    A. Lo and N.-e. Tatar, Stabilization of a laminated beam with interfacial slip, Electron. J. Diff. Eqs., 129 (2015), 1-14.

    [13]

    M. Medjden and N.-e. Tatar, On the wave equation with a temporal nonlocal term, Dyn. Syst. Appl., 16 (2007), 665-672.

    [14]

    M. Medjden and N.-e. Tatar, Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel, Appl. Math. Comput., 167 (2005), 1221-1235.doi: 10.1016/j.amc.2004.08.035.

    [15]

    S. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457-1467.doi: 10.1016/j.jmaa.2007.11.048.

    [16]

    S. Messaoudi and M. I. Mustafa, A general result in a memory-type Timoshenko system, Comm. Pure Appl. Anal., (2013), 957-972.doi: 10.3934/cpaa.2013.12.957.

    [17]

    S. Messaoudi and B. Said-Houari, Uniform decay in a Timoshenko-type system with past history, J. Math. Anal. Appl., 360 (2009), 459-475.doi: 10.1016/j.jmaa.2009.06.064.

    [18]

    J. E. Munoz Rivera and F. P. Quispe Gomez, Existence and decay in non linear viscoelasticity, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6 (2003), 1-37.

    [19]

    V. Pata, Exponential stability in linear viscoelasticity, Quart. Appl. Math., LXIV (2006), 499-513.doi: 10.1090/S0033-569X-06-01010-4.

    [20]

    C. A. Rapaso, J. Ferreira, M. L. Santos and N. N. Castro, Exponential stabilization for the Timoshenko system with two weak dampings, Appl. Math. Lett., 18 (2005), 535-541.doi: 10.1016/j.aml.2004.03.017.

    [21]

    J. E. M. Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems: Global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.doi: 10.1016/S0022-247X(02)00436-5.

    [22]

    J. E. M. Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Contin. Dyn. Syst., 9 (2003), 1625-1639.doi: 10.3934/dcds.2003.9.1625.

    [23]

    D. H. Shi and D. X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback, IMA J. Math. Control Inform., 18 (2001), 395-403.doi: 10.1093/imamci/18.3.395.

    [24]

    D. H. Shi, S. H. Hou and D. X. Feng, Feedback stabilization of a Timoshenko beam with an end mass, Int. J. Control, 69 (1998), 285-300.doi: 10.1080/002071798222848.

    [25]

    A. Soufyane and Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Diff. Eqs., 29 (2003), 1-14.

    [26]

    N.-e. Tatar, Long time behavior for a viscoelastic problem with a positive definite kernel, Australian J. Math. Anal. Appl., 1 (2004), Article 5, 1-11.

    [27]

    N.-e. Tatar, Exponential decay for a viscoelastic problem with a singular problem, Zeit. Angew. Math. Phys., 60 (2009), 640-650.doi: 10.1007/s00033-008-8030-1.

    [28]

    N.-e. Tatar, On a large class of kernels yielding exponential stability in viscoelasticity, Appl. Math. Comp., 215 (2009), 2298-2306.doi: 10.1016/j.amc.2009.08.034.

    [29]

    N.-e. Tatar, Viscoelastic Timoshenko beams with occasionally constant relaxation functions, Appl. Math. Optim., 66 (2012), 123-145.doi: 10.1007/s00245-012-9167-z.

    [30]

    N.-e. Tatar, Exponential decay for a viscoelastically damped Timoshenko beam, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 505-524.doi: 10.1016/S0252-9602(13)60015-6.

    [31]

    N.-e. Tatar, Stabilization of a viscoelastic Timoshenko beam, Appl. Anal.: An International Journal, 92 (2013), 27-43.doi: 10.1080/00036811.2011.587810.

    [32]

    J.-M. Wang, G.-Q. Xu and S.-P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls, SIAM J. Control Optim., 44 (2005), 1575-1597.doi: 10.1137/040610003.

    [33]

    G. Q. Xu, Feedback exponential stabilization of a Timoshenko beam with both ends free, Int. J. Control, 72 (2005), 286-297.doi: 10.1080/00207170500095148.

    [34]

    Q. Yan et al., Boundary stabilization of nonuniform Timoshenko beam with a tipload, Chin. Ann. Math., 22 (2001), 485-494.doi: 10.1142/S0252959901000450.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(264) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return