Citation: |
[1] |
K. Akutagawa, G. Carron and R. Mazzeo, The Yamabe problem on stratified spaces, Geometric and Functional Analusis, 24 (2014), 1039-1079.doi: 10.1007/s00039-014-0298-z. |
[2] |
A. Bahri and J. M. Coron, The scalar curvature problem on the standard three-dimensional sphere, J. Funct. Anal., 95 (1991), 106-172.doi: 10.1016/0022-1236(91)90026-2. |
[3] |
D. Bartolucci, F. De Marchis and A. Malchiodi, Supercritical conformal metrics on surfaces with conical singularities, Int. Math. Res. Not., 24 (2011), 5625-5643.doi: 10.1093/imrn/rnq285. |
[4] |
W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math., 138 (1993), 213-242.doi: 10.2307/2946638. |
[5] |
P. Billingsley, Convergence of Probability Measures, J. Wiley and Sons, New York, 1968. |
[6] |
T. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal., 74 (1987) , 199-291 .doi: 10.1016/0022-1236(87)90025-5. |
[7] |
S. Y. A. Chang, On a fourth-order partial differential equation in conformal geometry harmonic analysis and partial differential equations, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999. |
[8] |
S.-Y. A Chang and W. Chen, A note on a class of higher order conformally covariant equations, Discrete Contin. Dynam. Systems, 7 (2001), 275-281.doi: 10.3934/dcds.2001.7.275. |
[9] |
S. Y. A. Chang and P. Yang, Prescribing Gaussian curvature on $S^{2}$, Acta Math., 159 (1987), 215-259.doi: 10.1007/BF02392560. |
[10] |
S. Y. A. Chang and P. Yang, The Q-curvature equation in conformal geometry, Géométrie différentielle, physique mathématique, mathématiques et société. II. Astérisque, 322 (2008), 23-38. |
[11] |
S. Chanillo and M. K.-H. Kiessling, Surfaces with prescribed Gauss curvature, Duke Math. J., 105 (2000), 309-353.doi: 10.1215/S0012-7094-00-10525-X. |
[12] |
A. Carlotto and A. Malchiodi, Weighted barycentric sets and singular Liouville equations on compact surfaces, J. Funct. Anal., 262 (2012), 409-450.doi: 10.1016/j.jfa.2011.09.012. |
[13] |
A. Carlotto and A. Malchiodi, A class of existence results for the singular Liouville equation, C. R. Math. Acad. Sci. Paris, 349 (2011), 161-166.doi: 10.1016/j.crma.2010.12.016. |
[14] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8. |
[15] |
W. Chen and C. Li, Qualitative Properties of solutions to some non-linear elliptic equations in $\mathbbR^{2}$, Duke Math. J., 71 (1993), 427-439.doi: 10.1215/S0012-7094-93-07117-7. |
[16] |
Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858.doi: 10.4007/annals.2008.168.813. |
[17] |
J. Dolbeault, M. J. Esteban and G. Tarantello, The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions, Ann. Sc. Norm. Super. Pisa Cl. Sci., VII (2008), 313-341. |
[18] |
R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Springer-Verlag, New York, 1985.doi: 10.1007/978-1-4613-8533-2. |
[19] |
J. Glimm and A. Jaffe, Quantum Physics, $2^{nd}$ ed., Springer Verlag, New York, 1987. |
[20] |
C. Graham, R. Jenne, L. Mason and G. Sparling, Conformally invariant powers of the Laplacian, I: Existence, J. London Math. Soc., 46 (1992), 557-565.doi: 10.1112/jlms/s2-46.3.557. |
[21] |
T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local $Q$-curvature equation in dimension three, Calc. Var. Partial Differential Equations, 52 (2015), 469-488.doi: 10.1007/s00526-014-0718-9. |
[22] |
J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), 14-42.doi: 10.2307/1971012. |
[23] |
M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math., 46 (1993), 27-56.doi: 10.1002/cpa.3160460103. |
[24] |
M. K.-H. Kiessling, Statistical mechanics approach to some problems in conformal geometry, Physica A, 279 (2000), 353-368.doi: 10.1016/S0378-4371(99)00515-4. |
[25] |
M. K.-H. Kiessling, Typicality analysis for the Newtonian N-body problem on $S^2$ in the $N\to \infty$ limit, J. Stat. Mech. Theory Exp., 01 (2011). |
[26] |
A. Malchiodi, Conformal metrics with constant Q-curvature, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 120, 11 pp.doi: 10.3842/SIGMA.2007.120. |
[27] |
A. Malchiodi, Variational methods for singular Liouville equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 21 (2010), 349-358.doi: 10.4171/RLM/577. |
[28] |
A. Malchiodi and D. Ruiz, New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces, Geometric and Functional Analysis, 21 (2011), 1196-1217.doi: 10.1007/s00039-011-0134-7. |
[29] |
L. Martinazzi, Classification of solutions to the higher order Liouville's equation on $\mathbbR^{2m}$, Math. Z., 263 (2009), 307-329.doi: 10.1007/s00209-008-0419-1. |
[30] |
J. Messer and H. Spohn, Statistical mechanics of the isothermal Lane-Emden equation, J. Stat. Phys., 29 (1982), 561-578.doi: 10.1007/BF01342187. |
[31] |
C. B. Ndiaye, Constant T-curvature conformal metrics on 4-manifolds with boundary, Pacific J. Math., 240 (2009), 151-184.doi: 10.2140/pjm.2009.240.151. |
[32] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.doi: 10.1002/cpa.20153. |
[33] |
M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., 324 (1991), 793-821.doi: 10.1090/S0002-9947-1991-1005085-9. |
[34] |
Y. Wang, Curvature and Statistics, Ph.D. Dissertation, Rutgers University, 2013. |
[35] |
J. Wei and X. Xu, On conformal deformations of metrics on $S^n$, J. Funct. Anal., 157 (1998), 292-325.doi: 10.1006/jfan.1998.3271. |