November  2016, 36(11): 6331-6377. doi: 10.3934/dcds.2016075

Groups of asymptotic diffeomorphisms

1. 

Northeastern University, Boston, MA 02115, United States, United States

Received  October 2015 Revised  June 2016 Published  August 2016

We consider classes of diffeomorphisms of Euclidean space with partial asymptotic expansions at infinity; the remainder term lies in a weighted Sobolev space whose properties at infinity fit with the desired application. We show that two such classes of asymptotic diffeomorphisms form topological groups under composition. As such, they can be used in the study of fluid dynamics according to the approach of V. Arnold [1].
Citation: Robert McOwen, Peter Topalov. Groups of asymptotic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6331-6377. doi: 10.3934/dcds.2016075
References:
[1]

V. Arnold, Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits,, Ann. Inst. Fourier, 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[2]

R. Bartnik, The mass of an asymptotically flat manifold,, Comm. Pure Appl. Math, 39 (1986), 661.  doi: 10.1002/cpa.3160390505.  Google Scholar

[3]

I. Bondareva and M. Shubin, Uniqueness of the solution of the Cauchy problem for the Korteweg - de Vries equation in classes of increasing functions,, Moscow Univ. Math. Bulletin, 40 (1985), 53.   Google Scholar

[4]

I. Bondareva and M. Shubin, Equations of Korteweg-de Vries type in classes of increasing functions,, J. Soviet Math., 51 (1990), 2323.  doi: 10.1007/BF01094991.  Google Scholar

[5]

J. P. Bourguignon and H. Brezis, Remarks on the Euler equation,, J. Func. Anal., 15 (1974), 341.   Google Scholar

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[7]

M. Cantor, Perfect fluid flows over $\mathbbR^n$ with asymptotic conditions,, J. Func. Anal., 18 (1975), 73.  doi: 10.1016/0022-1236(75)90030-0.  Google Scholar

[8]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Four. Grenoble, 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[9]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102.  doi: 10.2307/1970699.  Google Scholar

[10]

H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms,, Mem. Amer. Math. Soc., 226 (2013).  doi: 10.1090/S0065-9266-2013-00676-4.  Google Scholar

[11]

T. Kappeler, P. Perry, M. Shubin and P. Topalov, Solutions of mKdV in classes of functions unbounded at infinity,, J. Geom. Anal., 18 (2008), 443.  doi: 10.1007/s12220-008-9013-3.  Google Scholar

[12]

C. Kenig, G. Ponce and L. Vega, Global solutions for the KdV equation with unbounded data,, J. Diff. Equations, 139 (1997), 339.  doi: 10.1006/jdeq.1997.3297.  Google Scholar

[13]

R. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,, Comm. Pure Appl. Math., 32 (1979), 783.  doi: 10.1002/cpa.3160320604.  Google Scholar

[14]

R. McOwen, Partial Differential Equations: Methods and Applications,, 2nd ed, (2003).   Google Scholar

[15]

R. McOwen and P. Topalov, Asymptotics in shallow water waves,, Discrete Contin. Dyn. Syst., 35 (2015), 3103.  doi: 10.3934/dcds.2015.35.3103.  Google Scholar

[16]

R. McOwen and P. Topalov, Spatial asymptotic expansions in the incompressible Euler equation,, arXiv:1606.08059., ().   Google Scholar

[17]

A. Menikoff, The existence of unbounded solutions of the Korteweg-de Vries equation,, Comm. Pure Appl. Math., 25 (1972), 407.  doi: 10.1002/cpa.3160250404.  Google Scholar

[18]

P. Michor and D. Mumford, A zoo of diffeomorphisms groups on $\mathbbR^n$,, Ann. Glob. Anal. Geom., 44 (): 529.  doi: 10.1007/s10455-013-9380-2.  Google Scholar

[19]

G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Visaro group,, J. Geom. Phys., 24 (1998), 203.  doi: 10.1016/S0393-0440(97)00010-7.  Google Scholar

[20]

D. Montgomery, On continuity in topological groups,, Bull. Amer. Math. Soc., 42 (1936), 879.  doi: 10.1090/S0002-9904-1936-06456-6.  Google Scholar

show all references

References:
[1]

V. Arnold, Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits,, Ann. Inst. Fourier, 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[2]

R. Bartnik, The mass of an asymptotically flat manifold,, Comm. Pure Appl. Math, 39 (1986), 661.  doi: 10.1002/cpa.3160390505.  Google Scholar

[3]

I. Bondareva and M. Shubin, Uniqueness of the solution of the Cauchy problem for the Korteweg - de Vries equation in classes of increasing functions,, Moscow Univ. Math. Bulletin, 40 (1985), 53.   Google Scholar

[4]

I. Bondareva and M. Shubin, Equations of Korteweg-de Vries type in classes of increasing functions,, J. Soviet Math., 51 (1990), 2323.  doi: 10.1007/BF01094991.  Google Scholar

[5]

J. P. Bourguignon and H. Brezis, Remarks on the Euler equation,, J. Func. Anal., 15 (1974), 341.   Google Scholar

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[7]

M. Cantor, Perfect fluid flows over $\mathbbR^n$ with asymptotic conditions,, J. Func. Anal., 18 (1975), 73.  doi: 10.1016/0022-1236(75)90030-0.  Google Scholar

[8]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Four. Grenoble, 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[9]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102.  doi: 10.2307/1970699.  Google Scholar

[10]

H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms,, Mem. Amer. Math. Soc., 226 (2013).  doi: 10.1090/S0065-9266-2013-00676-4.  Google Scholar

[11]

T. Kappeler, P. Perry, M. Shubin and P. Topalov, Solutions of mKdV in classes of functions unbounded at infinity,, J. Geom. Anal., 18 (2008), 443.  doi: 10.1007/s12220-008-9013-3.  Google Scholar

[12]

C. Kenig, G. Ponce and L. Vega, Global solutions for the KdV equation with unbounded data,, J. Diff. Equations, 139 (1997), 339.  doi: 10.1006/jdeq.1997.3297.  Google Scholar

[13]

R. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,, Comm. Pure Appl. Math., 32 (1979), 783.  doi: 10.1002/cpa.3160320604.  Google Scholar

[14]

R. McOwen, Partial Differential Equations: Methods and Applications,, 2nd ed, (2003).   Google Scholar

[15]

R. McOwen and P. Topalov, Asymptotics in shallow water waves,, Discrete Contin. Dyn. Syst., 35 (2015), 3103.  doi: 10.3934/dcds.2015.35.3103.  Google Scholar

[16]

R. McOwen and P. Topalov, Spatial asymptotic expansions in the incompressible Euler equation,, arXiv:1606.08059., ().   Google Scholar

[17]

A. Menikoff, The existence of unbounded solutions of the Korteweg-de Vries equation,, Comm. Pure Appl. Math., 25 (1972), 407.  doi: 10.1002/cpa.3160250404.  Google Scholar

[18]

P. Michor and D. Mumford, A zoo of diffeomorphisms groups on $\mathbbR^n$,, Ann. Glob. Anal. Geom., 44 (): 529.  doi: 10.1007/s10455-013-9380-2.  Google Scholar

[19]

G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Visaro group,, J. Geom. Phys., 24 (1998), 203.  doi: 10.1016/S0393-0440(97)00010-7.  Google Scholar

[20]

D. Montgomery, On continuity in topological groups,, Bull. Amer. Math. Soc., 42 (1936), 879.  doi: 10.1090/S0002-9904-1936-06456-6.  Google Scholar

[1]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[2]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[3]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[6]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[7]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[10]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[19]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[20]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]