November  2016, 36(11): 6379-6411. doi: 10.3934/dcds.2016076

Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature

1. 

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States

2. 

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907

Received  January 2015 Revised  July 2016 Published  August 2016

We analyze the continuum limit of a thresholding algorithm for motion by mean curvature of one dimensional interfaces in various space-time discrete regimes. The algorithm can be viewed as a time-splitting scheme for the Allen-Cahn equation which is a typical model for the motion of materials phase boundaries. Our results extend the existing statements which are applicable mostly in semi-discrete (continuous in space and discrete in time) settings. The motivations of this work are twofolds: to investigate the interaction between multiple small parameters in nonlinear singularly perturbed problems, and to understand the anisotropy in curvature for interfaces in spatially discrete environments. In the current work, the small parameters are the spatial and temporal discretization step sizes: $\triangle x = h$ and $\triangle t = \tau$. We have identified the limiting description of the interfacial velocity in the (i) sub-critical ($h \ll \tau$), (ii) critical ($h = O(\tau)$), and (iii) super-critical ($h \gg \tau$) regimes. The first case gives the classical isotropic motion by mean curvature, while the second produces intricate pinning and de-pinning phenomena, and anisotropy in the velocity function of the interface. The last case produces no motion (complete pinning).
Citation: Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076
References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,, National Bureau of Standards, (1964).   Google Scholar

[2]

G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature,, SIAM J. Numer. Anal., 32 (1995), 484.  doi: 10.1137/0732020.  Google Scholar

[3]

G. Barles, H. Soner and P. Souganidis, Front propagation and phase field theory,, SIAM J. Control Optim., 31 (1993), 439.  doi: 10.1137/0331021.  Google Scholar

[4]

B. Bence, J. Merriman and S. Osher, Motion of multiple functions: A level set approach,, J. Comput. Phys., 112 (1994), 334.  doi: 10.1006/jcph.1994.1105.  Google Scholar

[5]

L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics,, J. Differential Equations, 90 (1991), 211.  doi: 10.1016/0022-0396(91)90147-2.  Google Scholar

[6]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[7]

X. Chen, C. Elliott, A. Gardiner and J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation,, Appl. Anal., 69 (1998), 47.   Google Scholar

[8]

L. Evans, Convergence of an algorithm for mean curvature motion,, Indiana Univ. Math. J., 42 (1993), 533.  doi: 10.1512/iumj.1993.42.42024.  Google Scholar

[9]

L. Evans, H. Soner and P. Souganidis, Phase transitions and generalized motion by mean curvature,, Comm. Pure Appl. Math., 45 (1992), 1097.  doi: 10.1002/cpa.3160450903.  Google Scholar

[10]

T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature,, J. Differential Geom., 38 (1993), 417.   Google Scholar

[11]

H. Ishii, G. Pires and P. Souganidis, Threshold dynamics type approximation schemes for propagating fronts,, J. Math. Soc. Japan, 51 (1999), 267.  doi: 10.2969/jmsj/05120267.  Google Scholar

[12]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces,, Trans. Amer. Math. Soc., 347 (1995), 1533.  doi: 10.1090/S0002-9947-1995-1672406-7.  Google Scholar

[13]

P. Souganidis and G. Barles, Convergence of approximation scheme for fully nonlinear second order equations,, Asymptotic Analysis, 4 (1991), 271.   Google Scholar

[14]

P. Souganidis and G. Barles, A new approach to front propagation problems: theory and applications,, Arch. Rational Mech. Anal., 141 (1998), 237.  doi: 10.1007/s002050050077.  Google Scholar

[15]

G. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge University Press, (1922).   Google Scholar

show all references

References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,, National Bureau of Standards, (1964).   Google Scholar

[2]

G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature,, SIAM J. Numer. Anal., 32 (1995), 484.  doi: 10.1137/0732020.  Google Scholar

[3]

G. Barles, H. Soner and P. Souganidis, Front propagation and phase field theory,, SIAM J. Control Optim., 31 (1993), 439.  doi: 10.1137/0331021.  Google Scholar

[4]

B. Bence, J. Merriman and S. Osher, Motion of multiple functions: A level set approach,, J. Comput. Phys., 112 (1994), 334.  doi: 10.1006/jcph.1994.1105.  Google Scholar

[5]

L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics,, J. Differential Equations, 90 (1991), 211.  doi: 10.1016/0022-0396(91)90147-2.  Google Scholar

[6]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[7]

X. Chen, C. Elliott, A. Gardiner and J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation,, Appl. Anal., 69 (1998), 47.   Google Scholar

[8]

L. Evans, Convergence of an algorithm for mean curvature motion,, Indiana Univ. Math. J., 42 (1993), 533.  doi: 10.1512/iumj.1993.42.42024.  Google Scholar

[9]

L. Evans, H. Soner and P. Souganidis, Phase transitions and generalized motion by mean curvature,, Comm. Pure Appl. Math., 45 (1992), 1097.  doi: 10.1002/cpa.3160450903.  Google Scholar

[10]

T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature,, J. Differential Geom., 38 (1993), 417.   Google Scholar

[11]

H. Ishii, G. Pires and P. Souganidis, Threshold dynamics type approximation schemes for propagating fronts,, J. Math. Soc. Japan, 51 (1999), 267.  doi: 10.2969/jmsj/05120267.  Google Scholar

[12]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces,, Trans. Amer. Math. Soc., 347 (1995), 1533.  doi: 10.1090/S0002-9947-1995-1672406-7.  Google Scholar

[13]

P. Souganidis and G. Barles, Convergence of approximation scheme for fully nonlinear second order equations,, Asymptotic Analysis, 4 (1991), 271.   Google Scholar

[14]

P. Souganidis and G. Barles, A new approach to front propagation problems: theory and applications,, Arch. Rational Mech. Anal., 141 (1998), 237.  doi: 10.1007/s002050050077.  Google Scholar

[15]

G. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge University Press, (1922).   Google Scholar

[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[4]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[9]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[10]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[11]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[12]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[13]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[14]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[15]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[16]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[17]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[18]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[19]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[20]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]