Citation: |
[1] |
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, 1964. |
[2] |
G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500.doi: 10.1137/0732020. |
[3] |
G. Barles, H. Soner and P. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim., 31 (1993), 439-469.doi: 10.1137/0331021. |
[4] |
B. Bence, J. Merriman and S. Osher, Motion of multiple functions: A level set approach, J. Comput. Phys., 112 (1994), 334-363.doi: 10.1006/jcph.1994.1105. |
[5] |
L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Differential Equations, 90 (1991), 211-237.doi: 10.1016/0022-0396(91)90147-2. |
[6] |
X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141.doi: 10.1016/0022-0396(92)90146-E. |
[7] |
X. Chen, C. Elliott, A. Gardiner and J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation, Appl. Anal., 69 (1998), 47-56 . |
[8] |
L. Evans, Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., 42 (1993), 533-557.doi: 10.1512/iumj.1993.42.42024. |
[9] |
L. Evans, H. Soner and P. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.doi: 10.1002/cpa.3160450903. |
[10] |
T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Differential Geom., 38 (1993), 417-461. |
[11] |
H. Ishii, G. Pires and P. Souganidis, Threshold dynamics type approximation schemes for propagating fronts, J. Math. Soc. Japan, 51 (1999), 267-308.doi: 10.2969/jmsj/05120267. |
[12] |
P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), 1533-1589.doi: 10.1090/S0002-9947-1995-1672406-7. |
[13] |
P. Souganidis and G. Barles, Convergence of approximation scheme for fully nonlinear second order equations, Asymptotic Analysis, 4 (1991), 271-283. |
[14] |
P. Souganidis and G. Barles, A new approach to front propagation problems: theory and applications, Arch. Rational Mech. Anal., 141 (1998), 237-296.doi: 10.1007/s002050050077. |
[15] |
G. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922. |