November  2016, 36(11): 6379-6411. doi: 10.3934/dcds.2016076

Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature

1. 

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States

2. 

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907

Received  January 2015 Revised  July 2016 Published  August 2016

We analyze the continuum limit of a thresholding algorithm for motion by mean curvature of one dimensional interfaces in various space-time discrete regimes. The algorithm can be viewed as a time-splitting scheme for the Allen-Cahn equation which is a typical model for the motion of materials phase boundaries. Our results extend the existing statements which are applicable mostly in semi-discrete (continuous in space and discrete in time) settings. The motivations of this work are twofolds: to investigate the interaction between multiple small parameters in nonlinear singularly perturbed problems, and to understand the anisotropy in curvature for interfaces in spatially discrete environments. In the current work, the small parameters are the spatial and temporal discretization step sizes: $\triangle x = h$ and $\triangle t = \tau$. We have identified the limiting description of the interfacial velocity in the (i) sub-critical ($h \ll \tau$), (ii) critical ($h = O(\tau)$), and (iii) super-critical ($h \gg \tau$) regimes. The first case gives the classical isotropic motion by mean curvature, while the second produces intricate pinning and de-pinning phenomena, and anisotropy in the velocity function of the interface. The last case produces no motion (complete pinning).
Citation: Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076
References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,, National Bureau of Standards, (1964).

[2]

G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature,, SIAM J. Numer. Anal., 32 (1995), 484. doi: 10.1137/0732020.

[3]

G. Barles, H. Soner and P. Souganidis, Front propagation and phase field theory,, SIAM J. Control Optim., 31 (1993), 439. doi: 10.1137/0331021.

[4]

B. Bence, J. Merriman and S. Osher, Motion of multiple functions: A level set approach,, J. Comput. Phys., 112 (1994), 334. doi: 10.1006/jcph.1994.1105.

[5]

L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics,, J. Differential Equations, 90 (1991), 211. doi: 10.1016/0022-0396(91)90147-2.

[6]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116. doi: 10.1016/0022-0396(92)90146-E.

[7]

X. Chen, C. Elliott, A. Gardiner and J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation,, Appl. Anal., 69 (1998), 47.

[8]

L. Evans, Convergence of an algorithm for mean curvature motion,, Indiana Univ. Math. J., 42 (1993), 533. doi: 10.1512/iumj.1993.42.42024.

[9]

L. Evans, H. Soner and P. Souganidis, Phase transitions and generalized motion by mean curvature,, Comm. Pure Appl. Math., 45 (1992), 1097. doi: 10.1002/cpa.3160450903.

[10]

T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature,, J. Differential Geom., 38 (1993), 417.

[11]

H. Ishii, G. Pires and P. Souganidis, Threshold dynamics type approximation schemes for propagating fronts,, J. Math. Soc. Japan, 51 (1999), 267. doi: 10.2969/jmsj/05120267.

[12]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces,, Trans. Amer. Math. Soc., 347 (1995), 1533. doi: 10.1090/S0002-9947-1995-1672406-7.

[13]

P. Souganidis and G. Barles, Convergence of approximation scheme for fully nonlinear second order equations,, Asymptotic Analysis, 4 (1991), 271.

[14]

P. Souganidis and G. Barles, A new approach to front propagation problems: theory and applications,, Arch. Rational Mech. Anal., 141 (1998), 237. doi: 10.1007/s002050050077.

[15]

G. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge University Press, (1922).

show all references

References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,, National Bureau of Standards, (1964).

[2]

G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature,, SIAM J. Numer. Anal., 32 (1995), 484. doi: 10.1137/0732020.

[3]

G. Barles, H. Soner and P. Souganidis, Front propagation and phase field theory,, SIAM J. Control Optim., 31 (1993), 439. doi: 10.1137/0331021.

[4]

B. Bence, J. Merriman and S. Osher, Motion of multiple functions: A level set approach,, J. Comput. Phys., 112 (1994), 334. doi: 10.1006/jcph.1994.1105.

[5]

L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics,, J. Differential Equations, 90 (1991), 211. doi: 10.1016/0022-0396(91)90147-2.

[6]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116. doi: 10.1016/0022-0396(92)90146-E.

[7]

X. Chen, C. Elliott, A. Gardiner and J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation,, Appl. Anal., 69 (1998), 47.

[8]

L. Evans, Convergence of an algorithm for mean curvature motion,, Indiana Univ. Math. J., 42 (1993), 533. doi: 10.1512/iumj.1993.42.42024.

[9]

L. Evans, H. Soner and P. Souganidis, Phase transitions and generalized motion by mean curvature,, Comm. Pure Appl. Math., 45 (1992), 1097. doi: 10.1002/cpa.3160450903.

[10]

T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature,, J. Differential Geom., 38 (1993), 417.

[11]

H. Ishii, G. Pires and P. Souganidis, Threshold dynamics type approximation schemes for propagating fronts,, J. Math. Soc. Japan, 51 (1999), 267. doi: 10.2969/jmsj/05120267.

[12]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces,, Trans. Amer. Math. Soc., 347 (1995), 1533. doi: 10.1090/S0002-9947-1995-1672406-7.

[13]

P. Souganidis and G. Barles, Convergence of approximation scheme for fully nonlinear second order equations,, Asymptotic Analysis, 4 (1991), 271.

[14]

P. Souganidis and G. Barles, A new approach to front propagation problems: theory and applications,, Arch. Rational Mech. Anal., 141 (1998), 237. doi: 10.1007/s002050050077.

[15]

G. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge University Press, (1922).

[1]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[2]

Andrew Comech. Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2711-2755. doi: 10.3934/dcds.2013.33.2711

[3]

Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155

[4]

Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673

[5]

Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707-716. doi: 10.3934/proc.2011.2011.707

[6]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[7]

Giovanni Colombo, Thuy T. T. Le. Higher order discrete controllability and the approximation of the minimum time function. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4293-4322. doi: 10.3934/dcds.2015.35.4293

[8]

Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89

[9]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[10]

Horst Osberger. Long-time behavior of a fully discrete Lagrangian scheme for a family of fourth order equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 405-434. doi: 10.3934/dcds.2017017

[11]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[12]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[13]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[14]

Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549

[15]

Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963

[16]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[17]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[18]

Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599

[19]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[20]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]