November  2016, 36(11): 6413-6451. doi: 10.3934/dcds.2016077

Ruelle transfer operators with two complex parameters and applications

1. 

Université de Bordeaux, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France

2. 

School of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009

Received  October 2015 Revised  June 2016 Published  August 2016

For a $C^2$ Axiom A flow $\phi_t: M \longrightarrow M$ on a Riemannian manifold $M$ and a basic set $\Lambda$ for $\phi_t$ we consider the Ruelle transfer operator $L_{f - s \tau + z g}$, where $f$ and $g$ are real-valued Hölder functions on $\Lambda$, $\tau$ is the roof function and $s, z \in \mathbb{C}$ are complex parameters. Under some assumptions about $\phi_t$ we establish estimates for the iterations of this Ruelle operator in the spirit of the estimates for operators with one complex parameter (see [4], [21], [22]). Two cases are covered: (i) for arbitrary Hölder $f,g$ when $|Im z| \leq B |Im s|^\mu$ for some constants $B > 0$, $0 < \mu < 1$ ($\mu = 1$ for Lipschitz $f,g$), (ii) for Lipschitz $f,g$ when $|Im s| \leq B_1 |Im z|$ for some constant $B_1 > 0$ . Applying these estimates, we obtain a non zero analytic extension of the zeta function $\zeta(s, z)$ for $P_f - \epsilon < Re (s) < P_f$ and $|z|$ small enough with a simple pole at $s = s(z)$. Two other applications are considered as well: the first concerns the Hannay-Ozorio de Almeida sum formula, while the second deals with the asymptotic of the counting function $\pi_F(T)$ for weighted primitive periods of the flow $\phi_t.$
Citation: Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077
References:
[1]

R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,, Lect. Notes in Maths. \textbf{470}, 470 (1975).   Google Scholar

[2]

R. Bowen, Symbolic dynamics for hyperbolic flows,, Amer. J. Math., 95 (1973), 429.  doi: 10.2307/2373793.  Google Scholar

[3]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows,, Invent. Math., 29 (1975), 181.  doi: 10.1007/BF01389848.  Google Scholar

[4]

D. Dolgopyat, Decay of correlations in Anosov flows,, Ann. Math., 147 (1998), 357.  doi: 10.2307/121012.  Google Scholar

[5]

J. M. Hannay and A. M. Ozorio de Almeida, Periodic orbits and a correlation function for the semiclassical density of states,, J. Phys. A, 17 (1984), 3429.  doi: 10.1088/0305-4470/17/18/013.  Google Scholar

[6]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Cambridge Univ. Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[7]

A. Katsuda and T. Sunada, Closed orbits in homology class,, Publ. Math. IHES, 71 (1990), 5.   Google Scholar

[8]

S. Lalley, Distribution of period orbits of symbolic and Axiom A flows,, Adv. Appl. Math., 8 (1987), 154.  doi: 10.1016/0196-8858(87)90012-1.  Google Scholar

[9]

F. Naud, Expanding maps on Cantor sets and analytic continuation of zeta function,, Ann. Sci. Ec. Norm. Sup., 38 (2005), 116.  doi: 10.1016/j.ansens.2004.11.002.  Google Scholar

[10]

W. Parry, Synchronization of canonical measures for hyperbolic attractors,, Comm. Math. Phys., 106 (1986), 267.  doi: 10.1007/BF01454975.  Google Scholar

[11]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics,, Astérisque, 187-188 (1990), 187.   Google Scholar

[12]

V. Petkov and L. Stoyanov, Sharp large deviations for some hyperbolic systems,, Erg. Th. & Dyn. Sys., 35 (2015), 249.  doi: 10.1017/etds.2013.48.  Google Scholar

[13]

V. Petkov and L. Stoyanov, Ruelle operators with two parameters and applications,, C. R. Acad. Sci. Paris, 353 (2015), 595.  doi: 10.1016/j.crma.2015.04.005.  Google Scholar

[14]

M. Pollicott, On the rate of mixing of Axiom A flows,, Invent. Math., 81 (1985), 413.  doi: 10.1007/BF01388579.  Google Scholar

[15]

M. Pollicott, A note on exponential mixing for Gibbs measures and counting weighted periodic orbits for geodesic flows,, Preprint, (2014).   Google Scholar

[16]

M. Pollicott and R. Sharp, Exponential error terms for growth functions on negatively curved surfaces,, Amer. J. Math., 120 (1998), 1019.  doi: 10.1353/ajm.1998.0041.  Google Scholar

[17]

M. Pollicott and R. Sharp, Large deviations, fluctuations and shrinking intervals,, Comm. Math. Phys., 290 (2009), 321.  doi: 10.1007/s00220-008-0725-9.  Google Scholar

[18]

M. Pollicott and R. Sharp, On the Hannay-Ozorio de Almeida sum formula,, Dynamics, 575-590 (2011), 575.  doi: 10.1007/978-3-642-14788-3_41.  Google Scholar

[19]

D. Ruelle, An extension of the theory of Fredholm determinants,, Publ. Math. IHES, 72 (1990), 175.   Google Scholar

[20]

L. Stoyanov, Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows,, Amer. J. Math., 123 (2001), 715.  doi: 10.1353/ajm.2001.0029.  Google Scholar

[21]

L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows,, Nonlinearity, 24 (2011), 1089.  doi: 10.1088/0951-7715/24/4/005.  Google Scholar

[22]

L. Stoyanov, Pinching conditions, linearization and regularity of Axiom A flows,, Discr. Cont. Dyn. Sys. A, 33 (2013), 391.  doi: 10.3934/dcds.2013.33.391.  Google Scholar

[23]

S. Waddington, Large deviations for Anosov flows,, Ann. Inst. H. Poincaré, 13 (1996), 445.   Google Scholar

[24]

P. Wright, Ruelle's lemma and Ruelle zeta functions,, Asymptotic Analysis, 80 (2012), 223.   Google Scholar

show all references

References:
[1]

R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,, Lect. Notes in Maths. \textbf{470}, 470 (1975).   Google Scholar

[2]

R. Bowen, Symbolic dynamics for hyperbolic flows,, Amer. J. Math., 95 (1973), 429.  doi: 10.2307/2373793.  Google Scholar

[3]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows,, Invent. Math., 29 (1975), 181.  doi: 10.1007/BF01389848.  Google Scholar

[4]

D. Dolgopyat, Decay of correlations in Anosov flows,, Ann. Math., 147 (1998), 357.  doi: 10.2307/121012.  Google Scholar

[5]

J. M. Hannay and A. M. Ozorio de Almeida, Periodic orbits and a correlation function for the semiclassical density of states,, J. Phys. A, 17 (1984), 3429.  doi: 10.1088/0305-4470/17/18/013.  Google Scholar

[6]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Cambridge Univ. Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[7]

A. Katsuda and T. Sunada, Closed orbits in homology class,, Publ. Math. IHES, 71 (1990), 5.   Google Scholar

[8]

S. Lalley, Distribution of period orbits of symbolic and Axiom A flows,, Adv. Appl. Math., 8 (1987), 154.  doi: 10.1016/0196-8858(87)90012-1.  Google Scholar

[9]

F. Naud, Expanding maps on Cantor sets and analytic continuation of zeta function,, Ann. Sci. Ec. Norm. Sup., 38 (2005), 116.  doi: 10.1016/j.ansens.2004.11.002.  Google Scholar

[10]

W. Parry, Synchronization of canonical measures for hyperbolic attractors,, Comm. Math. Phys., 106 (1986), 267.  doi: 10.1007/BF01454975.  Google Scholar

[11]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics,, Astérisque, 187-188 (1990), 187.   Google Scholar

[12]

V. Petkov and L. Stoyanov, Sharp large deviations for some hyperbolic systems,, Erg. Th. & Dyn. Sys., 35 (2015), 249.  doi: 10.1017/etds.2013.48.  Google Scholar

[13]

V. Petkov and L. Stoyanov, Ruelle operators with two parameters and applications,, C. R. Acad. Sci. Paris, 353 (2015), 595.  doi: 10.1016/j.crma.2015.04.005.  Google Scholar

[14]

M. Pollicott, On the rate of mixing of Axiom A flows,, Invent. Math., 81 (1985), 413.  doi: 10.1007/BF01388579.  Google Scholar

[15]

M. Pollicott, A note on exponential mixing for Gibbs measures and counting weighted periodic orbits for geodesic flows,, Preprint, (2014).   Google Scholar

[16]

M. Pollicott and R. Sharp, Exponential error terms for growth functions on negatively curved surfaces,, Amer. J. Math., 120 (1998), 1019.  doi: 10.1353/ajm.1998.0041.  Google Scholar

[17]

M. Pollicott and R. Sharp, Large deviations, fluctuations and shrinking intervals,, Comm. Math. Phys., 290 (2009), 321.  doi: 10.1007/s00220-008-0725-9.  Google Scholar

[18]

M. Pollicott and R. Sharp, On the Hannay-Ozorio de Almeida sum formula,, Dynamics, 575-590 (2011), 575.  doi: 10.1007/978-3-642-14788-3_41.  Google Scholar

[19]

D. Ruelle, An extension of the theory of Fredholm determinants,, Publ. Math. IHES, 72 (1990), 175.   Google Scholar

[20]

L. Stoyanov, Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows,, Amer. J. Math., 123 (2001), 715.  doi: 10.1353/ajm.2001.0029.  Google Scholar

[21]

L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows,, Nonlinearity, 24 (2011), 1089.  doi: 10.1088/0951-7715/24/4/005.  Google Scholar

[22]

L. Stoyanov, Pinching conditions, linearization and regularity of Axiom A flows,, Discr. Cont. Dyn. Sys. A, 33 (2013), 391.  doi: 10.3934/dcds.2013.33.391.  Google Scholar

[23]

S. Waddington, Large deviations for Anosov flows,, Ann. Inst. H. Poincaré, 13 (1996), 445.   Google Scholar

[24]

P. Wright, Ruelle's lemma and Ruelle zeta functions,, Asymptotic Analysis, 80 (2012), 223.   Google Scholar

[1]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[2]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[3]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[4]

Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521

[5]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[6]

Sanyi Tang, Wenhong Pang. On the continuity of the function describing the times of meeting impulsive set and its application. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1399-1406. doi: 10.3934/mbe.2017072

[7]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[8]

Jose S. Cánovas, Antonio Falcó. The set of periods for a class of skew-products. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 893-900. doi: 10.3934/dcds.2000.6.893

[9]

Lluís Alsedà, Sylvie Ruette. On the set of periods of sigma maps of degree 1. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4683-4734. doi: 10.3934/dcds.2015.35.4683

[10]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[11]

Robert Baier, Thuy T. T. Le. Construction of the minimum time function for linear systems via higher-order set-valued methods. Mathematical Control & Related Fields, 2019, 9 (2) : 223-255. doi: 10.3934/mcrf.2019012

[12]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[13]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[14]

Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 27-40. doi: 10.3934/mbe.2009.6.27

[15]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[16]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[17]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[18]

Leandro Cioletti, Artur O. Lopes. Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6139-6152. doi: 10.3934/dcds.2017264

[19]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[20]

Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control & Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]