November  2016, 36(11): 6413-6451. doi: 10.3934/dcds.2016077

Ruelle transfer operators with two complex parameters and applications

1. 

Université de Bordeaux, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France

2. 

School of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009

Received  October 2015 Revised  June 2016 Published  August 2016

For a $C^2$ Axiom A flow $\phi_t: M \longrightarrow M$ on a Riemannian manifold $M$ and a basic set $\Lambda$ for $\phi_t$ we consider the Ruelle transfer operator $L_{f - s \tau + z g}$, where $f$ and $g$ are real-valued Hölder functions on $\Lambda$, $\tau$ is the roof function and $s, z \in \mathbb{C}$ are complex parameters. Under some assumptions about $\phi_t$ we establish estimates for the iterations of this Ruelle operator in the spirit of the estimates for operators with one complex parameter (see [4], [21], [22]). Two cases are covered: (i) for arbitrary Hölder $f,g$ when $|Im z| \leq B |Im s|^\mu$ for some constants $B > 0$, $0 < \mu < 1$ ($\mu = 1$ for Lipschitz $f,g$), (ii) for Lipschitz $f,g$ when $|Im s| \leq B_1 |Im z|$ for some constant $B_1 > 0$ . Applying these estimates, we obtain a non zero analytic extension of the zeta function $\zeta(s, z)$ for $P_f - \epsilon < Re (s) < P_f$ and $|z|$ small enough with a simple pole at $s = s(z)$. Two other applications are considered as well: the first concerns the Hannay-Ozorio de Almeida sum formula, while the second deals with the asymptotic of the counting function $\pi_F(T)$ for weighted primitive periods of the flow $\phi_t.$
Citation: Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077
References:
[1]

R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,, Lect. Notes in Maths. \textbf{470}, 470 (1975).   Google Scholar

[2]

R. Bowen, Symbolic dynamics for hyperbolic flows,, Amer. J. Math., 95 (1973), 429.  doi: 10.2307/2373793.  Google Scholar

[3]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows,, Invent. Math., 29 (1975), 181.  doi: 10.1007/BF01389848.  Google Scholar

[4]

D. Dolgopyat, Decay of correlations in Anosov flows,, Ann. Math., 147 (1998), 357.  doi: 10.2307/121012.  Google Scholar

[5]

J. M. Hannay and A. M. Ozorio de Almeida, Periodic orbits and a correlation function for the semiclassical density of states,, J. Phys. A, 17 (1984), 3429.  doi: 10.1088/0305-4470/17/18/013.  Google Scholar

[6]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Cambridge Univ. Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[7]

A. Katsuda and T. Sunada, Closed orbits in homology class,, Publ. Math. IHES, 71 (1990), 5.   Google Scholar

[8]

S. Lalley, Distribution of period orbits of symbolic and Axiom A flows,, Adv. Appl. Math., 8 (1987), 154.  doi: 10.1016/0196-8858(87)90012-1.  Google Scholar

[9]

F. Naud, Expanding maps on Cantor sets and analytic continuation of zeta function,, Ann. Sci. Ec. Norm. Sup., 38 (2005), 116.  doi: 10.1016/j.ansens.2004.11.002.  Google Scholar

[10]

W. Parry, Synchronization of canonical measures for hyperbolic attractors,, Comm. Math. Phys., 106 (1986), 267.  doi: 10.1007/BF01454975.  Google Scholar

[11]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics,, Astérisque, 187-188 (1990), 187.   Google Scholar

[12]

V. Petkov and L. Stoyanov, Sharp large deviations for some hyperbolic systems,, Erg. Th. & Dyn. Sys., 35 (2015), 249.  doi: 10.1017/etds.2013.48.  Google Scholar

[13]

V. Petkov and L. Stoyanov, Ruelle operators with two parameters and applications,, C. R. Acad. Sci. Paris, 353 (2015), 595.  doi: 10.1016/j.crma.2015.04.005.  Google Scholar

[14]

M. Pollicott, On the rate of mixing of Axiom A flows,, Invent. Math., 81 (1985), 413.  doi: 10.1007/BF01388579.  Google Scholar

[15]

M. Pollicott, A note on exponential mixing for Gibbs measures and counting weighted periodic orbits for geodesic flows,, Preprint, (2014).   Google Scholar

[16]

M. Pollicott and R. Sharp, Exponential error terms for growth functions on negatively curved surfaces,, Amer. J. Math., 120 (1998), 1019.  doi: 10.1353/ajm.1998.0041.  Google Scholar

[17]

M. Pollicott and R. Sharp, Large deviations, fluctuations and shrinking intervals,, Comm. Math. Phys., 290 (2009), 321.  doi: 10.1007/s00220-008-0725-9.  Google Scholar

[18]

M. Pollicott and R. Sharp, On the Hannay-Ozorio de Almeida sum formula,, Dynamics, 575-590 (2011), 575.  doi: 10.1007/978-3-642-14788-3_41.  Google Scholar

[19]

D. Ruelle, An extension of the theory of Fredholm determinants,, Publ. Math. IHES, 72 (1990), 175.   Google Scholar

[20]

L. Stoyanov, Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows,, Amer. J. Math., 123 (2001), 715.  doi: 10.1353/ajm.2001.0029.  Google Scholar

[21]

L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows,, Nonlinearity, 24 (2011), 1089.  doi: 10.1088/0951-7715/24/4/005.  Google Scholar

[22]

L. Stoyanov, Pinching conditions, linearization and regularity of Axiom A flows,, Discr. Cont. Dyn. Sys. A, 33 (2013), 391.  doi: 10.3934/dcds.2013.33.391.  Google Scholar

[23]

S. Waddington, Large deviations for Anosov flows,, Ann. Inst. H. Poincaré, 13 (1996), 445.   Google Scholar

[24]

P. Wright, Ruelle's lemma and Ruelle zeta functions,, Asymptotic Analysis, 80 (2012), 223.   Google Scholar

show all references

References:
[1]

R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,, Lect. Notes in Maths. \textbf{470}, 470 (1975).   Google Scholar

[2]

R. Bowen, Symbolic dynamics for hyperbolic flows,, Amer. J. Math., 95 (1973), 429.  doi: 10.2307/2373793.  Google Scholar

[3]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows,, Invent. Math., 29 (1975), 181.  doi: 10.1007/BF01389848.  Google Scholar

[4]

D. Dolgopyat, Decay of correlations in Anosov flows,, Ann. Math., 147 (1998), 357.  doi: 10.2307/121012.  Google Scholar

[5]

J. M. Hannay and A. M. Ozorio de Almeida, Periodic orbits and a correlation function for the semiclassical density of states,, J. Phys. A, 17 (1984), 3429.  doi: 10.1088/0305-4470/17/18/013.  Google Scholar

[6]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Cambridge Univ. Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[7]

A. Katsuda and T. Sunada, Closed orbits in homology class,, Publ. Math. IHES, 71 (1990), 5.   Google Scholar

[8]

S. Lalley, Distribution of period orbits of symbolic and Axiom A flows,, Adv. Appl. Math., 8 (1987), 154.  doi: 10.1016/0196-8858(87)90012-1.  Google Scholar

[9]

F. Naud, Expanding maps on Cantor sets and analytic continuation of zeta function,, Ann. Sci. Ec. Norm. Sup., 38 (2005), 116.  doi: 10.1016/j.ansens.2004.11.002.  Google Scholar

[10]

W. Parry, Synchronization of canonical measures for hyperbolic attractors,, Comm. Math. Phys., 106 (1986), 267.  doi: 10.1007/BF01454975.  Google Scholar

[11]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics,, Astérisque, 187-188 (1990), 187.   Google Scholar

[12]

V. Petkov and L. Stoyanov, Sharp large deviations for some hyperbolic systems,, Erg. Th. & Dyn. Sys., 35 (2015), 249.  doi: 10.1017/etds.2013.48.  Google Scholar

[13]

V. Petkov and L. Stoyanov, Ruelle operators with two parameters and applications,, C. R. Acad. Sci. Paris, 353 (2015), 595.  doi: 10.1016/j.crma.2015.04.005.  Google Scholar

[14]

M. Pollicott, On the rate of mixing of Axiom A flows,, Invent. Math., 81 (1985), 413.  doi: 10.1007/BF01388579.  Google Scholar

[15]

M. Pollicott, A note on exponential mixing for Gibbs measures and counting weighted periodic orbits for geodesic flows,, Preprint, (2014).   Google Scholar

[16]

M. Pollicott and R. Sharp, Exponential error terms for growth functions on negatively curved surfaces,, Amer. J. Math., 120 (1998), 1019.  doi: 10.1353/ajm.1998.0041.  Google Scholar

[17]

M. Pollicott and R. Sharp, Large deviations, fluctuations and shrinking intervals,, Comm. Math. Phys., 290 (2009), 321.  doi: 10.1007/s00220-008-0725-9.  Google Scholar

[18]

M. Pollicott and R. Sharp, On the Hannay-Ozorio de Almeida sum formula,, Dynamics, 575-590 (2011), 575.  doi: 10.1007/978-3-642-14788-3_41.  Google Scholar

[19]

D. Ruelle, An extension of the theory of Fredholm determinants,, Publ. Math. IHES, 72 (1990), 175.   Google Scholar

[20]

L. Stoyanov, Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows,, Amer. J. Math., 123 (2001), 715.  doi: 10.1353/ajm.2001.0029.  Google Scholar

[21]

L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows,, Nonlinearity, 24 (2011), 1089.  doi: 10.1088/0951-7715/24/4/005.  Google Scholar

[22]

L. Stoyanov, Pinching conditions, linearization and regularity of Axiom A flows,, Discr. Cont. Dyn. Sys. A, 33 (2013), 391.  doi: 10.3934/dcds.2013.33.391.  Google Scholar

[23]

S. Waddington, Large deviations for Anosov flows,, Ann. Inst. H. Poincaré, 13 (1996), 445.   Google Scholar

[24]

P. Wright, Ruelle's lemma and Ruelle zeta functions,, Asymptotic Analysis, 80 (2012), 223.   Google Scholar

[1]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[2]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[5]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[6]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[7]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[8]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[11]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[12]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[13]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]