-
Previous Article
Backward iteration algorithms for Julia sets of Möbius semigroups
- DCDS Home
- This Issue
-
Next Article
Ruelle transfer operators with two complex parameters and applications
Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues
1. | School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
2. | School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China |
References:
[1] |
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.
doi: 10.1016/0362-546X(83)90115-3. |
[2] |
S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles (Russian) Bull. Acad. Sci. URSS, Sér. Math. [Izvestia Akad. Nauk SSSR], 4 (1940), 17-26. |
[3] |
B. T. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, J. Math. Anal. Appl., 394 (2012), 488-495.
doi: 10.1016/j.jmaa.2012.04.025. |
[4] |
B. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal., 71 (2009), 4883-4892.
doi: 10.1016/j.na.2009.03.065. |
[5] |
M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627.
doi: 10.1016/S0362-546X(97)00169-7. |
[6] |
M. Cuesta, D. de Figueiredo and J.-P. Gossez, The beginning of the Fučik spectrum for the $p$-Laplacian, J. Differential Equations, 159 (1999), 212-238.
doi: 10.1006/jdeq.1999.3645. |
[7] |
P. Drábek and S. B. Robinson, Resonance problems for the $p$-Laplacian, J. Funct. Anal., 169 (1999), 189-200.
doi: 10.1006/jfan.1999.3501. |
[8] |
L. Ding, L. Li and J. L. Zhang, Solutions to Kirchhoff equations with combined nonlinearities, Electron. J. Differential Equations, 2014, No. 10, 10 pp. |
[9] | |
[10] |
P. Kanishka and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006. |
[11] |
Z. P. Liang, F. Y. Li and J. P. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155-167.
doi: 10.1016/j.anihpc.2013.01.006. |
[12] |
J.-L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and partial differential equations, 30, 284-346, North-Holland Math. Stud., North-Holland, Amsterdam-New York, 1978 |
[13] |
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287.
doi: 10.1016/j.na.2008.02.011. |
[14] |
A. M. Mao and S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239-243.
doi: 10.1016/j.jmaa.2011.05.021. |
[15] |
S. Michael, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Second edition, Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-662-03212-1. |
[16] |
S. I. Pohožaev, A certain class of quasilinear hyperbolic equations (Russian), Mat. Sb. (N.S.), 96 (1975), 152-166, 168. |
[17] |
J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations, Discrete Contin. Dyn. Syst., 33 (2013), 2139-2154.
doi: 10.3934/dcds.2013.33.2139. |
[18] |
J. Sun and S. B. Liu, Nontrivial solutions of Kirchhoff type problems, Appl. Math. Lett., 25 (2012), 500-504.
doi: 10.1016/j.aml.2011.09.045. |
[19] |
J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222.
doi: 10.1016/j.na.2010.09.061. |
[20] |
S. Z. Song and C. L. Tang, Resonance problems for the $p$-Laplacian with a nonlinear boundary condition, Nonlinear Anal., 64 (2006), 2007-2021.
doi: 10.1016/j.na.2005.07.035. |
[21] |
Y. W. Ye, Infinitely many solutions for Kirchhoff type problems, Differ. Equ. Appl., 5 (2013), 83-92.
doi: 10.7153/dea-05-06. |
[22] |
Y. Yang and J. H. Zhang, Positive and negative solutions of a class of nonlocal problems, Nonlinear Anal., 73 (2010), 25-30.
doi: 10.1016/j.na.2010.02.008. |
[23] |
Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett., 23 (2010), 377-380.
doi: 10.1016/j.aml.2009.11.001. |
[24] |
Z. T. Zhang and P. Kanishka, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102. |
show all references
References:
[1] |
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.
doi: 10.1016/0362-546X(83)90115-3. |
[2] |
S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles (Russian) Bull. Acad. Sci. URSS, Sér. Math. [Izvestia Akad. Nauk SSSR], 4 (1940), 17-26. |
[3] |
B. T. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, J. Math. Anal. Appl., 394 (2012), 488-495.
doi: 10.1016/j.jmaa.2012.04.025. |
[4] |
B. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal., 71 (2009), 4883-4892.
doi: 10.1016/j.na.2009.03.065. |
[5] |
M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627.
doi: 10.1016/S0362-546X(97)00169-7. |
[6] |
M. Cuesta, D. de Figueiredo and J.-P. Gossez, The beginning of the Fučik spectrum for the $p$-Laplacian, J. Differential Equations, 159 (1999), 212-238.
doi: 10.1006/jdeq.1999.3645. |
[7] |
P. Drábek and S. B. Robinson, Resonance problems for the $p$-Laplacian, J. Funct. Anal., 169 (1999), 189-200.
doi: 10.1006/jfan.1999.3501. |
[8] |
L. Ding, L. Li and J. L. Zhang, Solutions to Kirchhoff equations with combined nonlinearities, Electron. J. Differential Equations, 2014, No. 10, 10 pp. |
[9] | |
[10] |
P. Kanishka and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006. |
[11] |
Z. P. Liang, F. Y. Li and J. P. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155-167.
doi: 10.1016/j.anihpc.2013.01.006. |
[12] |
J.-L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and partial differential equations, 30, 284-346, North-Holland Math. Stud., North-Holland, Amsterdam-New York, 1978 |
[13] |
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287.
doi: 10.1016/j.na.2008.02.011. |
[14] |
A. M. Mao and S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239-243.
doi: 10.1016/j.jmaa.2011.05.021. |
[15] |
S. Michael, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Second edition, Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-662-03212-1. |
[16] |
S. I. Pohožaev, A certain class of quasilinear hyperbolic equations (Russian), Mat. Sb. (N.S.), 96 (1975), 152-166, 168. |
[17] |
J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations, Discrete Contin. Dyn. Syst., 33 (2013), 2139-2154.
doi: 10.3934/dcds.2013.33.2139. |
[18] |
J. Sun and S. B. Liu, Nontrivial solutions of Kirchhoff type problems, Appl. Math. Lett., 25 (2012), 500-504.
doi: 10.1016/j.aml.2011.09.045. |
[19] |
J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222.
doi: 10.1016/j.na.2010.09.061. |
[20] |
S. Z. Song and C. L. Tang, Resonance problems for the $p$-Laplacian with a nonlinear boundary condition, Nonlinear Anal., 64 (2006), 2007-2021.
doi: 10.1016/j.na.2005.07.035. |
[21] |
Y. W. Ye, Infinitely many solutions for Kirchhoff type problems, Differ. Equ. Appl., 5 (2013), 83-92.
doi: 10.7153/dea-05-06. |
[22] |
Y. Yang and J. H. Zhang, Positive and negative solutions of a class of nonlocal problems, Nonlinear Anal., 73 (2010), 25-30.
doi: 10.1016/j.na.2010.02.008. |
[23] |
Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett., 23 (2010), 377-380.
doi: 10.1016/j.aml.2009.11.001. |
[24] |
Z. T. Zhang and P. Kanishka, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102. |
[1] |
Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139 |
[2] |
Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080 |
[3] |
Sami Aouaoui. A multiplicity result for some Kirchhoff-type equations involving exponential growth condition in $\mathbb{R}^2 $. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1351-1370. doi: 10.3934/cpaa.2016.15.1351 |
[4] |
Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943 |
[5] |
Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425 |
[6] |
Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219 |
[7] |
Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056 |
[8] |
Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731 |
[9] |
Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure and Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043 |
[10] |
Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 213-227. doi: 10.3934/dcdss.2021015 |
[11] |
Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022046 |
[12] |
Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010 |
[13] |
Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91 |
[14] |
Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111 |
[15] |
Zhijian Yang, Na Feng, Yanan Li. Robust attractors for a Kirchhoff-Boussinesq type equation. Evolution Equations and Control Theory, 2020, 9 (2) : 469-486. doi: 10.3934/eect.2020020 |
[16] |
Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721 |
[17] |
Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009 |
[18] |
Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009 |
[19] |
Cyril Joel Batkam, João R. Santos Júnior. Schrödinger-Kirchhoff-Poisson type systems. Communications on Pure and Applied Analysis, 2016, 15 (2) : 429-444. doi: 10.3934/cpaa.2016.15.429 |
[20] |
Leszek Gasiński, Nikolaos S. Papageorgiou. Nonlinear hemivariational inequalities with eigenvalues near zero. Conference Publications, 2005, 2005 (Special) : 317-326. doi: 10.3934/proc.2005.2005.317 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]