\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues

Abstract Related Papers Cited by
  • We study the following Kirchhoff type problem: \begin{equation*} \left\{ \begin{array}{ccc} -\left(a+b\int_{\Omega}|\nabla u|^2dx \right) \Delta u=f(x,u), &\mbox{in} \ \ \Omega, \\ u=0, &\text{on} \ \partial \Omega. \end{array} \right. \end{equation*} Note that $F(x,t)=\int_0^1 f(x,s)ds$ is the primitive function of $f$. In the first result, we prove the existence of solutions by applying the $G-$Linking Theorem when the quotient $\frac{4F(x,t)}{bt^4}$ stays between $\mu_k$ and $\mu_{k+1}$ allowing for resonance with $\mu_{k+1}$ at infinity. In the second result, for the case that the quotient $\frac{4F(x,t)}{bt^4}$ stays between $\mu_1$ and $\mu'_{2}$ allowing for resonance with $\mu'_{2}$ at infinity, we find a nontrivial solution by using the classical Linking Theorem and argument of the characterization of $\mu'_2$. Meanwhile, similar results are obtained for degenerate problem.
    Mathematics Subject Classification: 35J60, 35A15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.doi: 10.1016/0362-546X(83)90115-3.

    [2]

    S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles (Russian) Bull. Acad. Sci. URSS, Sér. Math. [Izvestia Akad. Nauk SSSR], 4 (1940), 17-26.

    [3]

    B. T. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, J. Math. Anal. Appl., 394 (2012), 488-495.doi: 10.1016/j.jmaa.2012.04.025.

    [4]

    B. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal., 71 (2009), 4883-4892.doi: 10.1016/j.na.2009.03.065.

    [5]

    M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627.doi: 10.1016/S0362-546X(97)00169-7.

    [6]

    M. Cuesta, D. de Figueiredo and J.-P. Gossez, The beginning of the Fučik spectrum for the $p$-Laplacian, J. Differential Equations, 159 (1999), 212-238.doi: 10.1006/jdeq.1999.3645.

    [7]

    P. Drábek and S. B. Robinson, Resonance problems for the $p$-Laplacian, J. Funct. Anal., 169 (1999), 189-200.doi: 10.1006/jfan.1999.3501.

    [8]

    L. Ding, L. Li and J. L. Zhang, Solutions to Kirchhoff equations with combined nonlinearities, Electron. J. Differential Equations, 2014, No. 10, 10 pp.

    [9]

    G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

    [10]

    P. Kanishka and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.doi: 10.1016/j.jde.2005.03.006.

    [11]

    Z. P. Liang, F. Y. Li and J. P. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155-167.doi: 10.1016/j.anihpc.2013.01.006.

    [12]

    J.-L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and partial differential equations, 30, 284-346, North-Holland Math. Stud., North-Holland, Amsterdam-New York, 1978

    [13]

    A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287.doi: 10.1016/j.na.2008.02.011.

    [14]

    A. M. Mao and S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239-243.doi: 10.1016/j.jmaa.2011.05.021.

    [15]

    S. Michael, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Second edition, Springer-Verlag, Berlin, 1996.doi: 10.1007/978-3-662-03212-1.

    [16]

    S. I. Pohožaev, A certain class of quasilinear hyperbolic equations (Russian), Mat. Sb. (N.S.), 96 (1975), 152-166, 168.

    [17]

    J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations, Discrete Contin. Dyn. Syst., 33 (2013), 2139-2154.doi: 10.3934/dcds.2013.33.2139.

    [18]

    J. Sun and S. B. Liu, Nontrivial solutions of Kirchhoff type problems, Appl. Math. Lett., 25 (2012), 500-504.doi: 10.1016/j.aml.2011.09.045.

    [19]

    J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222.doi: 10.1016/j.na.2010.09.061.

    [20]

    S. Z. Song and C. L. Tang, Resonance problems for the $p$-Laplacian with a nonlinear boundary condition, Nonlinear Anal., 64 (2006), 2007-2021.doi: 10.1016/j.na.2005.07.035.

    [21]

    Y. W. Ye, Infinitely many solutions for Kirchhoff type problems, Differ. Equ. Appl., 5 (2013), 83-92.doi: 10.7153/dea-05-06.

    [22]

    Y. Yang and J. H. Zhang, Positive and negative solutions of a class of nonlocal problems, Nonlinear Anal., 73 (2010), 25-30.doi: 10.1016/j.na.2010.02.008.

    [23]

    Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett., 23 (2010), 377-380.doi: 10.1016/j.aml.2009.11.001.

    [24]

    Z. T. Zhang and P. Kanishka, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.doi: 10.1016/j.jmaa.2005.06.102.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return