-
Previous Article
Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions
- DCDS Home
- This Issue
-
Next Article
Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues
Backward iteration algorithms for Julia sets of Möbius semigroups
1. | Department of Mathematical Sciences, Ball State University, Muncie, IN 47306 |
2. | Department of Mathematics, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043 |
References:
[1] |
M. Barnsley, Fractals Everywhere, Academic Press, Inc., Boston, MA, 1988. |
[2] |
M. F. Barnsley and S. G. Demko, Rational approximation of fractals, in Rational approximation and interpolation (Tampa, Fla., 1983), vol. 1105 of Lecture Notes in Math., Springer, Berlin, 1984, 73-88.
doi: 10.1007/BFb0072400. |
[3] |
M. F. Barnsley, J. H. Elton and D. P. Hardin, Recurrent iterated function systems, Constr. Approx., 5 (1989), 3-31.
doi: 10.1007/BF01889596. |
[4] |
A. F. Beardon, The Geometry of Discrete Groups, vol. 91 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995, Corrected reprint of the 1983 original. |
[5] |
D. Boyd, An invariant measure for finitely generated rational semigroups, Complex Variables Theory Appl., 39 (1999), 229-254.
doi: 10.1080/17476939908815193. |
[6] |
T. Butz, W. Conatser, B. Dean, K. Hart, Y. Li and R. Stankewitz, Julia 2.0 fractal drawing program, URL https://github.com/bsumath/julia/wiki. |
[7] |
J. H. Elton, An ergodic theorem for iterated maps, Ergodic Theory Dynam. Systems, 7 (1987), 481-488.
doi: 10.1017/S0143385700004168. |
[8] |
D. Fried, S. M. Marotta and R. Stankewitz, Complex dynamics of Möbius semigroups, Ergodic Theory Dynam. Systems, 32 (2012), 1889-1929.
doi: 10.1017/S014338571100054X. |
[9] |
H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces, Israel J. Math., 46 (1983), 12-32.
doi: 10.1007/BF02760620. |
[10] |
J. Hawkins and M. Taylor, Maximal entropy measure for rational maps and a random iteration algorithme, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1442-1447.
doi: 10.1142/S021812740300731X. |
[11] |
A. Hinkkanen and G. Martin, The dynamics of semigroups of rational functions I, Proc. London Math. Soc., 3 (1996), 358-384.
doi: 10.1112/plms/s3-73.2.358. |
[12] |
A. Hinkkanen and G. Martin, Julia sets of rational semigroups, Math. Z., 222 (1996), 161-169.
doi: 10.1007/BF02621862. |
[13] |
J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[14] |
A. Freire, A. Lopes and R. Mañé, An invariant measure for rational maps, Bol. Soc. Bras. Math., 14 (1983), 45-62.
doi: 10.1007/BF02584744. |
[15] |
M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergod. Th. & Dynam. Sys., 3 (1983), 351-385.
doi: 10.1017/S0143385700002030. |
[16] |
R. Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Bras. Math., 14 (1983), 27-43.
doi: 10.1007/BF02584743. |
[17] |
E. Mihailescu, Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets, Discrete Contin. Dyn. Syst., 32 (2012), 961-975.
doi: 10.3934/dcds.2012.32.961. |
[18] |
R. Stankewitz, Completely Invariant Julia Sets of Rational Semigroups, Ph.D. Thesis. University of Illinois, 1998. |
[19] |
R. Stankewitz, Density of repelling fixed points in the Julia set of a rational or entire semigroup, II, Discrete Contin. Dyn. Syst., 32 (2012), 2583-2589.
doi: 10.3934/dcds.2012.32.2583. |
[20] |
R. Stankewitz and H. Sumi, Random backward iteration algorithm for Julia sets of rational semigroups, Discrete Contin. Dyn. Syst., 35 (2015), 2165-2175.
doi: 10.3934/dcds.2015.35.2165. |
[21] |
H. Sumi, Skew product maps related to finitely generated rational semigroups, Nonlinearity, 13 (2000), 995-1019.
doi: 10.1088/0951-7715/13/4/302. |
[22] |
H. Sumi, Random complex dynamics and semigroups of holomorphic maps, Proc. Lond. Math. Soc. (3), 102 (2011), 50-112.
doi: 10.1112/plms/pdq013. |
show all references
References:
[1] |
M. Barnsley, Fractals Everywhere, Academic Press, Inc., Boston, MA, 1988. |
[2] |
M. F. Barnsley and S. G. Demko, Rational approximation of fractals, in Rational approximation and interpolation (Tampa, Fla., 1983), vol. 1105 of Lecture Notes in Math., Springer, Berlin, 1984, 73-88.
doi: 10.1007/BFb0072400. |
[3] |
M. F. Barnsley, J. H. Elton and D. P. Hardin, Recurrent iterated function systems, Constr. Approx., 5 (1989), 3-31.
doi: 10.1007/BF01889596. |
[4] |
A. F. Beardon, The Geometry of Discrete Groups, vol. 91 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995, Corrected reprint of the 1983 original. |
[5] |
D. Boyd, An invariant measure for finitely generated rational semigroups, Complex Variables Theory Appl., 39 (1999), 229-254.
doi: 10.1080/17476939908815193. |
[6] |
T. Butz, W. Conatser, B. Dean, K. Hart, Y. Li and R. Stankewitz, Julia 2.0 fractal drawing program, URL https://github.com/bsumath/julia/wiki. |
[7] |
J. H. Elton, An ergodic theorem for iterated maps, Ergodic Theory Dynam. Systems, 7 (1987), 481-488.
doi: 10.1017/S0143385700004168. |
[8] |
D. Fried, S. M. Marotta and R. Stankewitz, Complex dynamics of Möbius semigroups, Ergodic Theory Dynam. Systems, 32 (2012), 1889-1929.
doi: 10.1017/S014338571100054X. |
[9] |
H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces, Israel J. Math., 46 (1983), 12-32.
doi: 10.1007/BF02760620. |
[10] |
J. Hawkins and M. Taylor, Maximal entropy measure for rational maps and a random iteration algorithme, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1442-1447.
doi: 10.1142/S021812740300731X. |
[11] |
A. Hinkkanen and G. Martin, The dynamics of semigroups of rational functions I, Proc. London Math. Soc., 3 (1996), 358-384.
doi: 10.1112/plms/s3-73.2.358. |
[12] |
A. Hinkkanen and G. Martin, Julia sets of rational semigroups, Math. Z., 222 (1996), 161-169.
doi: 10.1007/BF02621862. |
[13] |
J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[14] |
A. Freire, A. Lopes and R. Mañé, An invariant measure for rational maps, Bol. Soc. Bras. Math., 14 (1983), 45-62.
doi: 10.1007/BF02584744. |
[15] |
M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergod. Th. & Dynam. Sys., 3 (1983), 351-385.
doi: 10.1017/S0143385700002030. |
[16] |
R. Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Bras. Math., 14 (1983), 27-43.
doi: 10.1007/BF02584743. |
[17] |
E. Mihailescu, Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets, Discrete Contin. Dyn. Syst., 32 (2012), 961-975.
doi: 10.3934/dcds.2012.32.961. |
[18] |
R. Stankewitz, Completely Invariant Julia Sets of Rational Semigroups, Ph.D. Thesis. University of Illinois, 1998. |
[19] |
R. Stankewitz, Density of repelling fixed points in the Julia set of a rational or entire semigroup, II, Discrete Contin. Dyn. Syst., 32 (2012), 2583-2589.
doi: 10.3934/dcds.2012.32.2583. |
[20] |
R. Stankewitz and H. Sumi, Random backward iteration algorithm for Julia sets of rational semigroups, Discrete Contin. Dyn. Syst., 35 (2015), 2165-2175.
doi: 10.3934/dcds.2015.35.2165. |
[21] |
H. Sumi, Skew product maps related to finitely generated rational semigroups, Nonlinearity, 13 (2000), 995-1019.
doi: 10.1088/0951-7715/13/4/302. |
[22] |
H. Sumi, Random complex dynamics and semigroups of holomorphic maps, Proc. Lond. Math. Soc. (3), 102 (2011), 50-112.
doi: 10.1112/plms/pdq013. |
[1] |
Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165 |
[2] |
Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 945-976. doi: 10.3934/dcdsb.2021076 |
[3] |
Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139 |
[4] |
Hiroki Sumi, Mariusz Urbański. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 313-363. doi: 10.3934/dcds.2011.30.313 |
[5] |
Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375 |
[6] |
Youming Wang, Fei Yang, Song Zhang, Liangwen Liao. Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5185-5206. doi: 10.3934/dcds.2019211 |
[7] |
Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205 |
[8] |
Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050 |
[9] |
Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279 |
[10] |
Fawwaz Batayneh, Cecilia González-Tokman. On the number of invariant measures for random expanding maps in higher dimensions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5887-5914. doi: 10.3934/dcds.2021100 |
[11] |
Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801 |
[12] |
Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517 |
[13] |
Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499 |
[14] |
Fumihiko Nakamura, Yushi Nakano, Hisayoshi Toyokawa. Lyapunov exponents for random maps. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022058 |
[15] |
Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363 |
[16] |
Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261 |
[17] |
Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639 |
[18] |
Mark Comerford. Non-autonomous Julia sets with measurable invariant sequences of line fields. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 629-642. doi: 10.3934/dcds.2013.33.629 |
[19] |
Jason Atnip, Mariusz Urbański. Critically finite random maps of an interval. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4839-4906. doi: 10.3934/dcds.2020204 |
[20] |
Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118. |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]