November  2016, 36(11): 6523-6532. doi: 10.3934/dcds.2016081

On a constant rank theorem for nonlinear elliptic PDEs

1. 

Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556, United States

2. 

Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, United States

Received  October 2015 Revised  June 2016 Published  August 2016

We give a new proof of Bian-Guan's constant rank theorem for nonlinear elliptic equations. Our approach is to use a linear expression of the eigenvalues of the Hessian instead of quotients of elementary symmetric functions.
Citation: Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081
References:
[1]

O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl. (9), 76 (1997), 265. doi: 10.1016/S0021-7824(97)89952-7. Google Scholar

[2]

B. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential equations,, Invent. Math., 177 (2009), 307. doi: 10.1007/s00222-009-0179-5. Google Scholar

[3]

B. Bian and P. Guan, A structural condition for microscopic convexity principle,, Discrete Contin. Dyn. Syst., 28 (2010), 789. doi: 10.3934/dcds.2010.28.789. Google Scholar

[4]

H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, J. Functional Analysis, 22 (1976), 366. doi: 10.1016/0022-1236(76)90004-5. Google Scholar

[5]

L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations,, Duke Math. J., 52 (1985), 431. doi: 10.1215/S0012-7094-85-05221-4. Google Scholar

[6]

L. Caffarelli, P. Guan and X.-N. Ma, A constant rank theorem for solutions of fully nonlinear elliptic equations,, Comm. Pure Appl. Math., 60 (2007), 1769. doi: 10.1002/cpa.20197. Google Scholar

[7]

L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems,, Comm. Partial Differential Equations, 7 (1982), 1337. doi: 10.1080/03605308208820254. Google Scholar

[8]

P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control,, in Progress in Nonlinear Differential Equations and their Applications 58, 58 (2004). Google Scholar

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, (1998). Google Scholar

[10]

P. Guan, Q. Li and X. Zhang, A uniqueness theorem in Kähler geometry,, Math. Ann., 345 (2009), 377. doi: 10.1007/s00208-009-0358-0. Google Scholar

[11]

P. Guan, C. S. Lin and X.-N. Ma, The Christoffel-Minkowski problem II: Weingarten curvature equations,, Chin. Ann. Math., 27 (2006), 595. doi: 10.1007/s11401-005-0575-0. Google Scholar

[12]

P. Guan and X.-N. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equations,, Invent. Math., 151 (2003), 553. doi: 10.1007/s00222-002-0259-2. Google Scholar

[13]

P. Guan, X.-N. Ma and F. Zhou, The Christoffel-Minkowski problem III: existence and convexity of admissible solutions,, Comm. Pure Appl. Math., 59 (2006), 1352. doi: 10.1002/cpa.20118. Google Scholar

[14]

P. Guan and D. H. Phong, A maximum rank problem for degenerate elliptic fully nonlinear equations,, Math. Ann., 354 (2012), 147. doi: 10.1007/s00208-011-0729-1. Google Scholar

[15]

F. Han, X.-N. Ma and D. Wu, A constant rank theorem for Hermitian $k$-convex solutions of complex Laplace equations,, Methods Appl. Anal., 16 (2009), 263. doi: 10.4310/MAA.2009.v16.n2.a5. Google Scholar

[16]

B. Kawohl, A remark on N. Korevaar's concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem,, Math. Methods Appl. Sci., 8 (1986), 93. doi: 10.1002/mma.1670080107. Google Scholar

[17]

A. U. Kennington, Power concavity and boundary value problems,, Indiana Univ. Math. J., 34 (1985), 687. doi: 10.1512/iumj.1985.34.34036. Google Scholar

[18]

N. J. Korevaar, Capillary surface convexity above convex domains,, Indiana Univ. Math. J., 32 (1983), 73. doi: 10.1512/iumj.1983.32.32007. Google Scholar

[19]

N. J. Korevaar and J. L. Lewis, Convex solutions of certain elliptic equations have constant rank Hessians,, Arch. Rational Mech. Anal., 97 (1987), 19. doi: 10.1007/BF00279844. Google Scholar

[20]

Q. Li, Constant rank theorem in complex variables,, Indiana Univ. Math. J., 58 (2009), 1235. doi: 10.1512/iumj.2009.58.3574. Google Scholar

[21]

X.-N. Ma and L. Xu, The convexity of solutions of a class of Hessian equation in bounded convex domain in $\mathbbR^3$,, J. Funct. Anal., 255 (2008), 1713. doi: 10.1016/j.jfa.2008.06.008. Google Scholar

[22]

I. Singer, I. B. Wong, S.-T. Yau and S.S.T. Yau, An estimate of gap of the first two eigenvalues in the Schrodinger operator,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), 319. Google Scholar

[23]

J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, in Global Theory of Minimal Surfaces, (2005), 283. Google Scholar

[24]

G. Székelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds,, preprint, (). Google Scholar

[25]

G. Székelyhidi, V. Tosatti and B. Weinkove, Gauduchon metrics with prescribed volume form,, preprint, (). Google Scholar

[26]

N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations,, Revista Mat. Iber., 4 (1988), 453. doi: 10.4171/RMI/80. Google Scholar

[27]

X. J. Wang, Counterexample to the convexity of level sets of solutions to the mean curvature equation,, J. Eur. Math. Soc., 16 (2014), 1173. doi: 10.4171/JEMS/457. Google Scholar

[28]

M. Warren and Y. Yuan, Hessian estimates for the sigma-2 equation in dimension 3,, Comm. Pure Appl. Math., 62 (2009), 305. doi: 10.1002/cpa.20251. Google Scholar

show all references

References:
[1]

O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl. (9), 76 (1997), 265. doi: 10.1016/S0021-7824(97)89952-7. Google Scholar

[2]

B. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential equations,, Invent. Math., 177 (2009), 307. doi: 10.1007/s00222-009-0179-5. Google Scholar

[3]

B. Bian and P. Guan, A structural condition for microscopic convexity principle,, Discrete Contin. Dyn. Syst., 28 (2010), 789. doi: 10.3934/dcds.2010.28.789. Google Scholar

[4]

H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, J. Functional Analysis, 22 (1976), 366. doi: 10.1016/0022-1236(76)90004-5. Google Scholar

[5]

L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations,, Duke Math. J., 52 (1985), 431. doi: 10.1215/S0012-7094-85-05221-4. Google Scholar

[6]

L. Caffarelli, P. Guan and X.-N. Ma, A constant rank theorem for solutions of fully nonlinear elliptic equations,, Comm. Pure Appl. Math., 60 (2007), 1769. doi: 10.1002/cpa.20197. Google Scholar

[7]

L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems,, Comm. Partial Differential Equations, 7 (1982), 1337. doi: 10.1080/03605308208820254. Google Scholar

[8]

P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control,, in Progress in Nonlinear Differential Equations and their Applications 58, 58 (2004). Google Scholar

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, (1998). Google Scholar

[10]

P. Guan, Q. Li and X. Zhang, A uniqueness theorem in Kähler geometry,, Math. Ann., 345 (2009), 377. doi: 10.1007/s00208-009-0358-0. Google Scholar

[11]

P. Guan, C. S. Lin and X.-N. Ma, The Christoffel-Minkowski problem II: Weingarten curvature equations,, Chin. Ann. Math., 27 (2006), 595. doi: 10.1007/s11401-005-0575-0. Google Scholar

[12]

P. Guan and X.-N. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equations,, Invent. Math., 151 (2003), 553. doi: 10.1007/s00222-002-0259-2. Google Scholar

[13]

P. Guan, X.-N. Ma and F. Zhou, The Christoffel-Minkowski problem III: existence and convexity of admissible solutions,, Comm. Pure Appl. Math., 59 (2006), 1352. doi: 10.1002/cpa.20118. Google Scholar

[14]

P. Guan and D. H. Phong, A maximum rank problem for degenerate elliptic fully nonlinear equations,, Math. Ann., 354 (2012), 147. doi: 10.1007/s00208-011-0729-1. Google Scholar

[15]

F. Han, X.-N. Ma and D. Wu, A constant rank theorem for Hermitian $k$-convex solutions of complex Laplace equations,, Methods Appl. Anal., 16 (2009), 263. doi: 10.4310/MAA.2009.v16.n2.a5. Google Scholar

[16]

B. Kawohl, A remark on N. Korevaar's concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem,, Math. Methods Appl. Sci., 8 (1986), 93. doi: 10.1002/mma.1670080107. Google Scholar

[17]

A. U. Kennington, Power concavity and boundary value problems,, Indiana Univ. Math. J., 34 (1985), 687. doi: 10.1512/iumj.1985.34.34036. Google Scholar

[18]

N. J. Korevaar, Capillary surface convexity above convex domains,, Indiana Univ. Math. J., 32 (1983), 73. doi: 10.1512/iumj.1983.32.32007. Google Scholar

[19]

N. J. Korevaar and J. L. Lewis, Convex solutions of certain elliptic equations have constant rank Hessians,, Arch. Rational Mech. Anal., 97 (1987), 19. doi: 10.1007/BF00279844. Google Scholar

[20]

Q. Li, Constant rank theorem in complex variables,, Indiana Univ. Math. J., 58 (2009), 1235. doi: 10.1512/iumj.2009.58.3574. Google Scholar

[21]

X.-N. Ma and L. Xu, The convexity of solutions of a class of Hessian equation in bounded convex domain in $\mathbbR^3$,, J. Funct. Anal., 255 (2008), 1713. doi: 10.1016/j.jfa.2008.06.008. Google Scholar

[22]

I. Singer, I. B. Wong, S.-T. Yau and S.S.T. Yau, An estimate of gap of the first two eigenvalues in the Schrodinger operator,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), 319. Google Scholar

[23]

J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, in Global Theory of Minimal Surfaces, (2005), 283. Google Scholar

[24]

G. Székelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds,, preprint, (). Google Scholar

[25]

G. Székelyhidi, V. Tosatti and B. Weinkove, Gauduchon metrics with prescribed volume form,, preprint, (). Google Scholar

[26]

N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations,, Revista Mat. Iber., 4 (1988), 453. doi: 10.4171/RMI/80. Google Scholar

[27]

X. J. Wang, Counterexample to the convexity of level sets of solutions to the mean curvature equation,, J. Eur. Math. Soc., 16 (2014), 1173. doi: 10.4171/JEMS/457. Google Scholar

[28]

M. Warren and Y. Yuan, Hessian estimates for the sigma-2 equation in dimension 3,, Comm. Pure Appl. Math., 62 (2009), 305. doi: 10.1002/cpa.20251. Google Scholar

[1]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[2]

Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795

[3]

Bo Guan, Heming Jiao. The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 701-714. doi: 10.3934/dcds.2016.36.701

[4]

François Hamel, Emmanuel Russ, Nikolai Nadirashvili. Comparisons of eigenvalues of second order elliptic operators. Conference Publications, 2007, 2007 (Special) : 477-486. doi: 10.3934/proc.2007.2007.477

[5]

Tomas Godoy, Jean-Pierre Gossez, Sofia Paczka. On the principal eigenvalues of some elliptic problems with large drift. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 225-237. doi: 10.3934/dcds.2013.33.225

[6]

Hongwei Lou, Xueyuan Yin. Minimization of the elliptic higher eigenvalues for multiphase anisotropic conductors. Mathematical Control & Related Fields, 2018, 8 (3&4) : 855-877. doi: 10.3934/mcrf.2018038

[7]

Leszek Gasiński, Nikolaos S. Papageorgiou. Nonlinear hemivariational inequalities with eigenvalues near zero. Conference Publications, 2005, 2005 (Special) : 317-326. doi: 10.3934/proc.2005.2005.317

[8]

Feng Du, Adriano Cavalcante Bezerra. Estimates for eigenvalues of a system of elliptic equations with drift and of bi-drifting laplacian. Communications on Pure & Applied Analysis, 2017, 6 (2) : 475-491. doi: 10.3934/cpaa.2017024

[9]

Ming Huang, Cong Cheng, Yang Li, Zun Quan Xia. The space decomposition method for the sum of nonlinear convex maximum eigenvalues and its applications. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019034

[10]

Delia Ionescu-Kruse. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1475-1496. doi: 10.3934/cpaa.2012.11.1475

[11]

David L. Finn. Noncompact manifolds with constant negative scalar curvature and singular solutions to semihnear elliptic equations. Conference Publications, 1998, 1998 (Special) : 262-275. doi: 10.3934/proc.1998.1998.262

[12]

Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095

[13]

Igor E. Verbitsky. The Hessian Sobolev inequality and its extensions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6165-6179. doi: 10.3934/dcds.2015.35.6165

[14]

Magdalena Nockowska-Rosiak, Piotr Hachuła, Ewa Schmeidel. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 369-375. doi: 10.3934/dcdsb.2018025

[15]

Nina Ivochkina, Nadezda Filimonenkova. On the backgrounds of the theory of m-Hessian equations. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1687-1703. doi: 10.3934/cpaa.2013.12.1687

[16]

N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079

[17]

Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033

[18]

Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981

[19]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

[20]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]