November  2016, 36(11): 6523-6532. doi: 10.3934/dcds.2016081

On a constant rank theorem for nonlinear elliptic PDEs

1. 

Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556, United States

2. 

Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, United States

Received  October 2015 Revised  June 2016 Published  August 2016

We give a new proof of Bian-Guan's constant rank theorem for nonlinear elliptic equations. Our approach is to use a linear expression of the eigenvalues of the Hessian instead of quotients of elementary symmetric functions.
Citation: Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081
References:
[1]

O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl. (9), 76 (1997), 265.  doi: 10.1016/S0021-7824(97)89952-7.  Google Scholar

[2]

B. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential equations,, Invent. Math., 177 (2009), 307.  doi: 10.1007/s00222-009-0179-5.  Google Scholar

[3]

B. Bian and P. Guan, A structural condition for microscopic convexity principle,, Discrete Contin. Dyn. Syst., 28 (2010), 789.  doi: 10.3934/dcds.2010.28.789.  Google Scholar

[4]

H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, J. Functional Analysis, 22 (1976), 366.  doi: 10.1016/0022-1236(76)90004-5.  Google Scholar

[5]

L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations,, Duke Math. J., 52 (1985), 431.  doi: 10.1215/S0012-7094-85-05221-4.  Google Scholar

[6]

L. Caffarelli, P. Guan and X.-N. Ma, A constant rank theorem for solutions of fully nonlinear elliptic equations,, Comm. Pure Appl. Math., 60 (2007), 1769.  doi: 10.1002/cpa.20197.  Google Scholar

[7]

L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems,, Comm. Partial Differential Equations, 7 (1982), 1337.  doi: 10.1080/03605308208820254.  Google Scholar

[8]

P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control,, in Progress in Nonlinear Differential Equations and their Applications 58, 58 (2004).   Google Scholar

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, (1998).   Google Scholar

[10]

P. Guan, Q. Li and X. Zhang, A uniqueness theorem in Kähler geometry,, Math. Ann., 345 (2009), 377.  doi: 10.1007/s00208-009-0358-0.  Google Scholar

[11]

P. Guan, C. S. Lin and X.-N. Ma, The Christoffel-Minkowski problem II: Weingarten curvature equations,, Chin. Ann. Math., 27 (2006), 595.  doi: 10.1007/s11401-005-0575-0.  Google Scholar

[12]

P. Guan and X.-N. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equations,, Invent. Math., 151 (2003), 553.  doi: 10.1007/s00222-002-0259-2.  Google Scholar

[13]

P. Guan, X.-N. Ma and F. Zhou, The Christoffel-Minkowski problem III: existence and convexity of admissible solutions,, Comm. Pure Appl. Math., 59 (2006), 1352.  doi: 10.1002/cpa.20118.  Google Scholar

[14]

P. Guan and D. H. Phong, A maximum rank problem for degenerate elliptic fully nonlinear equations,, Math. Ann., 354 (2012), 147.  doi: 10.1007/s00208-011-0729-1.  Google Scholar

[15]

F. Han, X.-N. Ma and D. Wu, A constant rank theorem for Hermitian $k$-convex solutions of complex Laplace equations,, Methods Appl. Anal., 16 (2009), 263.  doi: 10.4310/MAA.2009.v16.n2.a5.  Google Scholar

[16]

B. Kawohl, A remark on N. Korevaar's concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem,, Math. Methods Appl. Sci., 8 (1986), 93.  doi: 10.1002/mma.1670080107.  Google Scholar

[17]

A. U. Kennington, Power concavity and boundary value problems,, Indiana Univ. Math. J., 34 (1985), 687.  doi: 10.1512/iumj.1985.34.34036.  Google Scholar

[18]

N. J. Korevaar, Capillary surface convexity above convex domains,, Indiana Univ. Math. J., 32 (1983), 73.  doi: 10.1512/iumj.1983.32.32007.  Google Scholar

[19]

N. J. Korevaar and J. L. Lewis, Convex solutions of certain elliptic equations have constant rank Hessians,, Arch. Rational Mech. Anal., 97 (1987), 19.  doi: 10.1007/BF00279844.  Google Scholar

[20]

Q. Li, Constant rank theorem in complex variables,, Indiana Univ. Math. J., 58 (2009), 1235.  doi: 10.1512/iumj.2009.58.3574.  Google Scholar

[21]

X.-N. Ma and L. Xu, The convexity of solutions of a class of Hessian equation in bounded convex domain in $\mathbbR^3$,, J. Funct. Anal., 255 (2008), 1713.  doi: 10.1016/j.jfa.2008.06.008.  Google Scholar

[22]

I. Singer, I. B. Wong, S.-T. Yau and S.S.T. Yau, An estimate of gap of the first two eigenvalues in the Schrodinger operator,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), 319.   Google Scholar

[23]

J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, in Global Theory of Minimal Surfaces, (2005), 283.   Google Scholar

[24]

G. Székelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds,, preprint, ().   Google Scholar

[25]

G. Székelyhidi, V. Tosatti and B. Weinkove, Gauduchon metrics with prescribed volume form,, preprint, ().   Google Scholar

[26]

N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations,, Revista Mat. Iber., 4 (1988), 453.  doi: 10.4171/RMI/80.  Google Scholar

[27]

X. J. Wang, Counterexample to the convexity of level sets of solutions to the mean curvature equation,, J. Eur. Math. Soc., 16 (2014), 1173.  doi: 10.4171/JEMS/457.  Google Scholar

[28]

M. Warren and Y. Yuan, Hessian estimates for the sigma-2 equation in dimension 3,, Comm. Pure Appl. Math., 62 (2009), 305.  doi: 10.1002/cpa.20251.  Google Scholar

show all references

References:
[1]

O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl. (9), 76 (1997), 265.  doi: 10.1016/S0021-7824(97)89952-7.  Google Scholar

[2]

B. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential equations,, Invent. Math., 177 (2009), 307.  doi: 10.1007/s00222-009-0179-5.  Google Scholar

[3]

B. Bian and P. Guan, A structural condition for microscopic convexity principle,, Discrete Contin. Dyn. Syst., 28 (2010), 789.  doi: 10.3934/dcds.2010.28.789.  Google Scholar

[4]

H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, J. Functional Analysis, 22 (1976), 366.  doi: 10.1016/0022-1236(76)90004-5.  Google Scholar

[5]

L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations,, Duke Math. J., 52 (1985), 431.  doi: 10.1215/S0012-7094-85-05221-4.  Google Scholar

[6]

L. Caffarelli, P. Guan and X.-N. Ma, A constant rank theorem for solutions of fully nonlinear elliptic equations,, Comm. Pure Appl. Math., 60 (2007), 1769.  doi: 10.1002/cpa.20197.  Google Scholar

[7]

L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems,, Comm. Partial Differential Equations, 7 (1982), 1337.  doi: 10.1080/03605308208820254.  Google Scholar

[8]

P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control,, in Progress in Nonlinear Differential Equations and their Applications 58, 58 (2004).   Google Scholar

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, (1998).   Google Scholar

[10]

P. Guan, Q. Li and X. Zhang, A uniqueness theorem in Kähler geometry,, Math. Ann., 345 (2009), 377.  doi: 10.1007/s00208-009-0358-0.  Google Scholar

[11]

P. Guan, C. S. Lin and X.-N. Ma, The Christoffel-Minkowski problem II: Weingarten curvature equations,, Chin. Ann. Math., 27 (2006), 595.  doi: 10.1007/s11401-005-0575-0.  Google Scholar

[12]

P. Guan and X.-N. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equations,, Invent. Math., 151 (2003), 553.  doi: 10.1007/s00222-002-0259-2.  Google Scholar

[13]

P. Guan, X.-N. Ma and F. Zhou, The Christoffel-Minkowski problem III: existence and convexity of admissible solutions,, Comm. Pure Appl. Math., 59 (2006), 1352.  doi: 10.1002/cpa.20118.  Google Scholar

[14]

P. Guan and D. H. Phong, A maximum rank problem for degenerate elliptic fully nonlinear equations,, Math. Ann., 354 (2012), 147.  doi: 10.1007/s00208-011-0729-1.  Google Scholar

[15]

F. Han, X.-N. Ma and D. Wu, A constant rank theorem for Hermitian $k$-convex solutions of complex Laplace equations,, Methods Appl. Anal., 16 (2009), 263.  doi: 10.4310/MAA.2009.v16.n2.a5.  Google Scholar

[16]

B. Kawohl, A remark on N. Korevaar's concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem,, Math. Methods Appl. Sci., 8 (1986), 93.  doi: 10.1002/mma.1670080107.  Google Scholar

[17]

A. U. Kennington, Power concavity and boundary value problems,, Indiana Univ. Math. J., 34 (1985), 687.  doi: 10.1512/iumj.1985.34.34036.  Google Scholar

[18]

N. J. Korevaar, Capillary surface convexity above convex domains,, Indiana Univ. Math. J., 32 (1983), 73.  doi: 10.1512/iumj.1983.32.32007.  Google Scholar

[19]

N. J. Korevaar and J. L. Lewis, Convex solutions of certain elliptic equations have constant rank Hessians,, Arch. Rational Mech. Anal., 97 (1987), 19.  doi: 10.1007/BF00279844.  Google Scholar

[20]

Q. Li, Constant rank theorem in complex variables,, Indiana Univ. Math. J., 58 (2009), 1235.  doi: 10.1512/iumj.2009.58.3574.  Google Scholar

[21]

X.-N. Ma and L. Xu, The convexity of solutions of a class of Hessian equation in bounded convex domain in $\mathbbR^3$,, J. Funct. Anal., 255 (2008), 1713.  doi: 10.1016/j.jfa.2008.06.008.  Google Scholar

[22]

I. Singer, I. B. Wong, S.-T. Yau and S.S.T. Yau, An estimate of gap of the first two eigenvalues in the Schrodinger operator,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), 319.   Google Scholar

[23]

J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, in Global Theory of Minimal Surfaces, (2005), 283.   Google Scholar

[24]

G. Székelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds,, preprint, ().   Google Scholar

[25]

G. Székelyhidi, V. Tosatti and B. Weinkove, Gauduchon metrics with prescribed volume form,, preprint, ().   Google Scholar

[26]

N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations,, Revista Mat. Iber., 4 (1988), 453.  doi: 10.4171/RMI/80.  Google Scholar

[27]

X. J. Wang, Counterexample to the convexity of level sets of solutions to the mean curvature equation,, J. Eur. Math. Soc., 16 (2014), 1173.  doi: 10.4171/JEMS/457.  Google Scholar

[28]

M. Warren and Y. Yuan, Hessian estimates for the sigma-2 equation in dimension 3,, Comm. Pure Appl. Math., 62 (2009), 305.  doi: 10.1002/cpa.20251.  Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[6]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[7]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[8]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[9]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[17]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[18]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[19]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[20]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]