November  2016, 36(11): 6557-6580. doi: 10.3934/dcds.2016084

Longtime behavior of the semilinear wave equation with gentle dissipation

1. 

Department of Mathematics, Zhengzhou University, No.100, Science Road, Zhengzhou 450001

2. 

School of Mathematics and Statistics, Zhengzhou University, No.100, Science Road, Zhengzhou 450001, China, China

Received  December 2015 Revised  June 2016 Published  August 2016

The paper investigates the well-posedness and longtime dynamics of the semilinear wave equation with gentle dissipation: $u_{tt}-\triangle u+\gamma(-\triangle)^{\alpha} u_{t}+f(u)=g(x)$, with $\alpha\in(0,1/2)$. The main results are concerned with the relationships among the growth exponent $p$ of nonlinearity $f(u)$ and the well-posedness and longtime behavior of solutions of the equation. We show that (i) the well-posedness and longtime dynamics of the equation are of characters of parabolic equations as $1 \leq p < p^* \equiv \frac{N + 4\alpha}{(N-2)^+}$; (ii) the subclass $\mathbb{G}$ of limit solutions has a weak global attractor as $p^* \leq p < p^{**}\equiv \frac{N+2}{N-2}\ (N \geq 3)$.
Citation: Zhijian Yang, Zhiming Liu, Na Feng. Longtime behavior of the semilinear wave equation with gentle dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6557-6580. doi: 10.3934/dcds.2016084
References:
[1]

J. M. Ball, Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations,, Nonlinear Science, 7 (1997), 475.  doi: 10.1007/s003329900037.  Google Scholar

[2]

J. M. Ball, Global attractors for damped semilinear wave equations,, Discrete Contin. Dyn. Syst., 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[3]

V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equations on $\mathbbR^3$,, Discrete Contin. Dyn. Syst., 7 (2001), 719.  doi: 10.3934/dcds.2001.7.719.  Google Scholar

[4]

N. Burq, G. Lebeau and F. Planchon, Global existence for energy critical waves in $3D$ domains,, J. of AMS, 21 (2008), 831.  doi: 10.1090/S0894-0347-08-00596-1.  Google Scholar

[5]

A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities,, Pacific J. Math., 207 (2002), 287.  doi: 10.2140/pjm.2002.207.287.  Google Scholar

[6]

A. N. Carvalho and J. W. Cholewa, Local well-posedness for strongly damped wave equations with critical nonlinearities,, Bull. Austral. Math. Soc., 66 (2002), 443.  doi: 10.1017/S0004972700040296.  Google Scholar

[7]

A. N. Carvalho and J. W. Cholewa, Regularity of solutions on the global attractor for a semilinear damped wave equation,, J. Math. Anal. Appl., 337 (2008), 932.  doi: 10.1016/j.jmaa.2007.04.051.  Google Scholar

[8]

A. N. Carvalho, J. W. Cholewa and T. Dlotko, Strongly damped wave problems: Bootstrapping and regularity of solutions,, J. Differential Equations, 244 (2008), 2310.  doi: 10.1016/j.jde.2008.02.011.  Google Scholar

[9]

A. N. Carvalho, J. W. Cholewa and T. Dlotko, Damped wave equations with fast dissipative nonlinearities,, Discrete Continuous Dynam. Systems - A, 24 (2009), 1147.  doi: 10.3934/dcds.2009.24.1147.  Google Scholar

[10]

S. Chen and R. Triggiani, Proof of two conjectures of G. Chen and D. L. Russell on structural damping for elastic systems,, Lecture Notes in Math., 1354 (1988), 234.  doi: 10.1007/BFb0089601.  Google Scholar

[11]

S. Chen and R. Triggiani, Proof of extension of two conjectures on structural damping for elastic systems,, Pacific J. Math., 136 (1989), 15.  doi: 10.2140/pjm.1989.136.15.  Google Scholar

[12]

S. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: the case $0 <\alpha < 1/2$,, Proceedings of the American Mathematical Society, 110 (1990), 401.  doi: 10.2307/2048084.  Google Scholar

[13]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping,, in Memories of AMS, 195 (2008).  doi: 10.1090/memo/0912.  Google Scholar

[14]

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping,, J. Abstr. Differ. Equ. Appl., 1 (2010), 86.   Google Scholar

[15]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping,, J. Differential Equations, 252 (2012), 1229.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[16]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations: Well-posedness and Long Time Dynamics,, Springer Science and Business Media, (2010).  doi: 10.1007/978-0-387-87712-9.  Google Scholar

[17]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems,, Springer, (2015).  doi: 10.1007/978-3-319-22903-4.  Google Scholar

[18]

E. Feireisl, Asymptotic behavior and attractors for a semilinear damped wave equation with supercritical exponent,, Roy. Soc. Edinburgh Sect.- A, 125 (1995), 1051.  doi: 10.1017/S0308210500022630.  Google Scholar

[19]

P. J. Graber and J. L. Shomberg, Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions,, Nonlinearity, 29 (2016).  doi: 10.1088/0951-7715/29/4/1171.  Google Scholar

[20]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation,, J. Differential Equations, 247 (2009), 1120.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[21]

V. Kalantarov, A. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré,, (2016) DOI 10.1007/s00023-016-0480-y., (2016), 00023.   Google Scholar

[22]

L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation,, Comm. Partial Differential Equations, 20 (1995), 1303.  doi: 10.1080/03605309508821133.  Google Scholar

[23]

V. Pata and M. Squassina, On the strongly damped wave equation,, Comm. Math. Phys., 253 (2005), 511.  doi: 10.1007/s00220-004-1233-1.  Google Scholar

[24]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations,, Nonlinearity, 19 (2006), 1495.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[25]

V. Pata and S. Zelik, A remark on the damped wave equation,, Commun. Pure Appl. Anal., 5 (2006), 611.   Google Scholar

[26]

A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains,, Adv. Differential Equations, 20 (2015), 495.   Google Scholar

[27]

A. Savostianov and S. Zelik, Recent progress in attractors for quintic wave equations,, Mathemaica Bohemica, 139 (2014), 657.   Google Scholar

[28]

A. Savostianov and S. Zelik, Smooth attractors for the quintic wave equations with fractional damping,, Asymptot. Anal., 87 (2014), 191.   Google Scholar

[29]

A. Savostianov, Strichartz Estimates and Smooth Attractors of Dissipative Hyperbolic Equations,, Doctoral dissertation, (2015).   Google Scholar

[30]

H. F. Smith and C. D. Sogge, Global Strichartz estimates for non-trapping perturbations of the Laplacian,, Comm. Partial Differential Equations, 25 (2000), 2171.  doi: 10.1080/03605300008821581.  Google Scholar

[31]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali diMatematica Pura ed Applicata, 146 (1986), 65.  doi: 10.1007/BF01762360.  Google Scholar

[32]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[33]

Z. J. Yang, N. Feng and T. F. Ma, Global attracts of the generalized double dispersion,, Nonlinear Analysis, 115 (2015), 103.  doi: 10.1016/j.na.2014.12.006.  Google Scholar

show all references

References:
[1]

J. M. Ball, Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations,, Nonlinear Science, 7 (1997), 475.  doi: 10.1007/s003329900037.  Google Scholar

[2]

J. M. Ball, Global attractors for damped semilinear wave equations,, Discrete Contin. Dyn. Syst., 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[3]

V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equations on $\mathbbR^3$,, Discrete Contin. Dyn. Syst., 7 (2001), 719.  doi: 10.3934/dcds.2001.7.719.  Google Scholar

[4]

N. Burq, G. Lebeau and F. Planchon, Global existence for energy critical waves in $3D$ domains,, J. of AMS, 21 (2008), 831.  doi: 10.1090/S0894-0347-08-00596-1.  Google Scholar

[5]

A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities,, Pacific J. Math., 207 (2002), 287.  doi: 10.2140/pjm.2002.207.287.  Google Scholar

[6]

A. N. Carvalho and J. W. Cholewa, Local well-posedness for strongly damped wave equations with critical nonlinearities,, Bull. Austral. Math. Soc., 66 (2002), 443.  doi: 10.1017/S0004972700040296.  Google Scholar

[7]

A. N. Carvalho and J. W. Cholewa, Regularity of solutions on the global attractor for a semilinear damped wave equation,, J. Math. Anal. Appl., 337 (2008), 932.  doi: 10.1016/j.jmaa.2007.04.051.  Google Scholar

[8]

A. N. Carvalho, J. W. Cholewa and T. Dlotko, Strongly damped wave problems: Bootstrapping and regularity of solutions,, J. Differential Equations, 244 (2008), 2310.  doi: 10.1016/j.jde.2008.02.011.  Google Scholar

[9]

A. N. Carvalho, J. W. Cholewa and T. Dlotko, Damped wave equations with fast dissipative nonlinearities,, Discrete Continuous Dynam. Systems - A, 24 (2009), 1147.  doi: 10.3934/dcds.2009.24.1147.  Google Scholar

[10]

S. Chen and R. Triggiani, Proof of two conjectures of G. Chen and D. L. Russell on structural damping for elastic systems,, Lecture Notes in Math., 1354 (1988), 234.  doi: 10.1007/BFb0089601.  Google Scholar

[11]

S. Chen and R. Triggiani, Proof of extension of two conjectures on structural damping for elastic systems,, Pacific J. Math., 136 (1989), 15.  doi: 10.2140/pjm.1989.136.15.  Google Scholar

[12]

S. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: the case $0 <\alpha < 1/2$,, Proceedings of the American Mathematical Society, 110 (1990), 401.  doi: 10.2307/2048084.  Google Scholar

[13]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping,, in Memories of AMS, 195 (2008).  doi: 10.1090/memo/0912.  Google Scholar

[14]

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping,, J. Abstr. Differ. Equ. Appl., 1 (2010), 86.   Google Scholar

[15]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping,, J. Differential Equations, 252 (2012), 1229.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[16]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations: Well-posedness and Long Time Dynamics,, Springer Science and Business Media, (2010).  doi: 10.1007/978-0-387-87712-9.  Google Scholar

[17]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems,, Springer, (2015).  doi: 10.1007/978-3-319-22903-4.  Google Scholar

[18]

E. Feireisl, Asymptotic behavior and attractors for a semilinear damped wave equation with supercritical exponent,, Roy. Soc. Edinburgh Sect.- A, 125 (1995), 1051.  doi: 10.1017/S0308210500022630.  Google Scholar

[19]

P. J. Graber and J. L. Shomberg, Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions,, Nonlinearity, 29 (2016).  doi: 10.1088/0951-7715/29/4/1171.  Google Scholar

[20]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation,, J. Differential Equations, 247 (2009), 1120.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[21]

V. Kalantarov, A. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré,, (2016) DOI 10.1007/s00023-016-0480-y., (2016), 00023.   Google Scholar

[22]

L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation,, Comm. Partial Differential Equations, 20 (1995), 1303.  doi: 10.1080/03605309508821133.  Google Scholar

[23]

V. Pata and M. Squassina, On the strongly damped wave equation,, Comm. Math. Phys., 253 (2005), 511.  doi: 10.1007/s00220-004-1233-1.  Google Scholar

[24]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations,, Nonlinearity, 19 (2006), 1495.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[25]

V. Pata and S. Zelik, A remark on the damped wave equation,, Commun. Pure Appl. Anal., 5 (2006), 611.   Google Scholar

[26]

A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains,, Adv. Differential Equations, 20 (2015), 495.   Google Scholar

[27]

A. Savostianov and S. Zelik, Recent progress in attractors for quintic wave equations,, Mathemaica Bohemica, 139 (2014), 657.   Google Scholar

[28]

A. Savostianov and S. Zelik, Smooth attractors for the quintic wave equations with fractional damping,, Asymptot. Anal., 87 (2014), 191.   Google Scholar

[29]

A. Savostianov, Strichartz Estimates and Smooth Attractors of Dissipative Hyperbolic Equations,, Doctoral dissertation, (2015).   Google Scholar

[30]

H. F. Smith and C. D. Sogge, Global Strichartz estimates for non-trapping perturbations of the Laplacian,, Comm. Partial Differential Equations, 25 (2000), 2171.  doi: 10.1080/03605300008821581.  Google Scholar

[31]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali diMatematica Pura ed Applicata, 146 (1986), 65.  doi: 10.1007/BF01762360.  Google Scholar

[32]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[33]

Z. J. Yang, N. Feng and T. F. Ma, Global attracts of the generalized double dispersion,, Nonlinear Analysis, 115 (2015), 103.  doi: 10.1016/j.na.2014.12.006.  Google Scholar

[1]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[4]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[5]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[6]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[7]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[8]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[11]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[12]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[13]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[14]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[17]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[18]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[19]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]