Citation: |
[1] |
J. M. Ball, Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations, Nonlinear Science, 7 (1997), 475-502.doi: 10.1007/s003329900037. |
[2] |
J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.doi: 10.3934/dcds.2004.10.31. |
[3] |
V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equations on $\mathbbR^3$, Discrete Contin. Dyn. Syst., 7 (2001), 719-735.doi: 10.3934/dcds.2001.7.719. |
[4] |
N. Burq, G. Lebeau and F. Planchon, Global existence for energy critical waves in $3D$ domains, J. of AMS, 21 (2008), 831-845.doi: 10.1090/S0894-0347-08-00596-1. |
[5] |
A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 207 (2002), 287-310.doi: 10.2140/pjm.2002.207.287. |
[6] |
A. N. Carvalho and J. W. Cholewa, Local well-posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc., 66 (2002), 443-463.doi: 10.1017/S0004972700040296. |
[7] |
A. N. Carvalho and J. W. Cholewa, Regularity of solutions on the global attractor for a semilinear damped wave equation, J. Math. Anal. Appl., 337 (2008), 932-948.doi: 10.1016/j.jmaa.2007.04.051. |
[8] |
A. N. Carvalho, J. W. Cholewa and T. Dlotko, Strongly damped wave problems: Bootstrapping and regularity of solutions, J. Differential Equations, 244 (2008), 2310-2333.doi: 10.1016/j.jde.2008.02.011. |
[9] |
A. N. Carvalho, J. W. Cholewa and T. Dlotko, Damped wave equations with fast dissipative nonlinearities, Discrete Continuous Dynam. Systems - A, 24 (2009), 1147-1165.doi: 10.3934/dcds.2009.24.1147. |
[10] |
S. Chen and R. Triggiani, Proof of two conjectures of G. Chen and D. L. Russell on structural damping for elastic systems, Lecture Notes in Math., Springer-Verlag, 1354 (1988), 234-256.doi: 10.1007/BFb0089601. |
[11] |
S. Chen and R. Triggiani, Proof of extension of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-55.doi: 10.2140/pjm.1989.136.15. |
[12] |
S. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: the case $0 <\alpha < 1/2$, Proceedings of the American Mathematical Society, 110 (1990), 401-415.doi: 10.2307/2048084. |
[13] |
I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, in Memories of AMS, 195, (Providence, RI: American Mathematical Society), 2008.doi: 10.1090/memo/0912. |
[14] |
I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping, J. Abstr. Differ. Equ. Appl., 1 (2010), 86-106. |
[15] |
I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.doi: 10.1016/j.jde.2011.08.022. |
[16] |
I. Chueshov and I. Lasiecka, Von Karman Evolution Equations: Well-posedness and Long Time Dynamics, Springer Science and Business Media, 2010.doi: 10.1007/978-0-387-87712-9. |
[17] |
I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, 2015.doi: 10.1007/978-3-319-22903-4. |
[18] |
E. Feireisl, Asymptotic behavior and attractors for a semilinear damped wave equation with supercritical exponent, Roy. Soc. Edinburgh Sect.- A, 125 (1995), 1051-1062.doi: 10.1017/S0308210500022630. |
[19] |
P. J. Graber and J. L. Shomberg, Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions, Nonlinearity, 29 (2016), 1171.doi: 10.1088/0951-7715/29/4/1171. |
[20] |
V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differential Equations, 247 (2009), 1120-1155.doi: 10.1016/j.jde.2009.04.010. |
[21] |
V. Kalantarov, A. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré, (2016) DOI 10.1007/s00023-016-0480-y. |
[22] |
L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.doi: 10.1080/03605309508821133. |
[23] |
V. Pata and M. Squassina, On the strongly damped wave equation, Comm. Math. Phys., 253 (2005), 511-533.doi: 10.1007/s00220-004-1233-1. |
[24] |
V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.doi: 10.1088/0951-7715/19/7/001. |
[25] |
V. Pata and S. Zelik, A remark on the damped wave equation, Commun. Pure Appl. Anal., 5 (2006), 611-616. |
[26] |
A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530. |
[27] |
A. Savostianov and S. Zelik, Recent progress in attractors for quintic wave equations, Mathemaica Bohemica, 139 (2014), 657-665. |
[28] |
A. Savostianov and S. Zelik, Smooth attractors for the quintic wave equations with fractional damping, Asymptot. Anal., 87 (2014), 191-221. |
[29] |
A. Savostianov, Strichartz Estimates and Smooth Attractors of Dissipative Hyperbolic Equations, Doctoral dissertation, University of Surrey, 2015. |
[30] |
H. F. Smith and C. D. Sogge, Global Strichartz estimates for non-trapping perturbations of the Laplacian, Comm. Partial Differential Equations, 25 (2000), 2171-2183.doi: 10.1080/03605300008821581. |
[31] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Annali diMatematica Pura ed Applicata, 146 (1986), 65-96.doi: 10.1007/BF01762360. |
[32] |
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.doi: 10.1007/978-1-4612-0645-3. |
[33] |
Z. J. Yang, N. Feng and T. F. Ma, Global attracts of the generalized double dispersion, Nonlinear Analysis, 115 (2015), 103-106.doi: 10.1016/j.na.2014.12.006. |