November  2016, 36(11): 6581-6597. doi: 10.3934/dcds.2016085

Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems

1. 

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China

2. 

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Jiangsu, China

Received  November 2015 Revised  June 2016 Published  August 2016

This article is devoted to the study of the irregular sets of Birkhoff averages in some nonuniformly hyperbolic systems via Pesin theory. Particularly, we give a conditional variational principle for the topological entropy of the irregular sets. Our result can be applied (i) to the diffeomorphisms on surfaces, (ii) to the nonuniformly hyperbolic diffeomorphisms described by Katok.
Citation: Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085
References:
[1]

J. Barral and M. Mensi, Gibbs measures on self-affine Sierpiński carpets and their singularity spectrum,, Ergodic Theory Dynam. Systems, 27 (2007), 1419.  doi: 10.1017/S0143385706001027.  Google Scholar

[2]

L. Barreira and Y. Pesin, Lyapunov Exponents and Smooth Ergodic Theory,, University Lecture Series, (2002).  doi: 10.1090/ulect/023.  Google Scholar

[3]

L. Barreira and Y. Pesin, Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents,, Encyclopedia of Mathematics and its Applications, (2007).  doi: 10.1017/CBO9781107326026.  Google Scholar

[4]

L. Barreira and B. Saussol, Variational principles and mixed multifractal spectra,, Trans. Amer. Math. Soc, 353 (2001), 3919.  doi: 10.1090/S0002-9947-01-02844-6.  Google Scholar

[5]

L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension,, Israel J. Math., 116 (2000), 29.  doi: 10.1007/BF02773211.  Google Scholar

[6]

J. Bochi, Genericity of zero Lyapunov exponents,, Ergodic Theory Dynam. Systems, 22 (2002), 1667.  doi: 10.1017/S0143385702001165.  Google Scholar

[7]

T. Bomfim and P. Varandas, Multifractal analysis for weak Gibbs measures: from large deviations to irregular sets,, Ergodic Theory Dynam. Systems., ().  doi: 10.1017/etds.2015.46.  Google Scholar

[8]

R. Bowen, Topological entropy for noncompact sets,, Trans. Amer. Math. Soc., 184 (1973), 125.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[9]

E. Chen, T. Kupper and L. Shu, Topological entropy for divergence points,, Ergodic Theory Dynam. Systems, 25 (2005), 1173.  doi: 10.1017/S0143385704000872.  Google Scholar

[10]

V. Climenhaga, Topological pressure of simultaneous level sets,, Nonlinearity, 26 (2013), 241.  doi: 10.1088/0951-7715/26/1/241.  Google Scholar

[11]

D. Feng, K. Lau and J. Wu, Ergodic limits on the conformal repellers,, Adv. Math., 169 (2002), 58.  doi: 10.1006/aima.2001.2054.  Google Scholar

[12]

M. Hirayama, Periodic probability measures are dense in the set of invariant measures,, Discrete Continuous Dynam. Systems - A, 9 (2003), 1185.  doi: 10.3934/dcds.2003.9.1185.  Google Scholar

[13]

T. Jordan and M. Rams, Multifractal analysis for Bedford-McMullen carpets,, Math. Proc. Camb. Phil. Soc., 150 (2011), 147.  doi: 10.1017/S0305004110000472.  Google Scholar

[14]

A. Katok, Bernoulli diffeomorphisms on surfaces,, Annals of Math. (2), 110 (1979), 529.  doi: 10.2307/1971237.  Google Scholar

[15]

A. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphism,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.   Google Scholar

[16]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[17]

C. Liang, G. Liao, W. Sun and X. Tian, Saturated sets for nonuniformly hyperbolic systems,, preprint, ().   Google Scholar

[18]

L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages,, J. Math. Pures Appl., 82 (2003), 1591.  doi: 10.1016/j.matpur.2003.09.007.  Google Scholar

[19]

L. Olsen, Self-affine multifractal Sierpinski sponges in $\mathbbR^d$,, Pacific J. Math., 183 (1998), 143.  doi: 10.2140/pjm.1998.183.143.  Google Scholar

[20]

V. Oseledec, A multiplicative ergodic theorem,, Trans. Mosc. Math. Soc., 19 (1968), 179.   Google Scholar

[21]

Y. Pei and E. Chen, On the variational principle for the topological pressure for certain non-compact sets,, Sci. China Math., 53 (2010), 1117.  doi: 10.1007/s11425-009-0109-4.  Google Scholar

[22]

Y. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications,, University of Chicago Press, (1997).  doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar

[23]

Y. Pesin and B. Pitskel, Topological pressure and the variational principle for noncompact sets,, Functional Anal. Appl., 18 (1984), 307.  doi: 10.1007/BF01083692.  Google Scholar

[24]

C. Pfister and W. Sullivan, On the topological entropy of saturated sets,, Ergodic Theory Dynam. Systems, 27 (2007), 929.  doi: 10.1017/S0143385706000824.  Google Scholar

[25]

M. Pollicott, Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds,, London Mathematical Society Lecture Note Series, (1993).  doi: 10.1017/CBO9780511752537.  Google Scholar

[26]

H. Reeve, The packing spectrum for Birkhoff averages on a self-affine repeller,, Ergodic Theory Dynam. Systems, 32 (2012), 1444.  doi: 10.1017/S0143385711000368.  Google Scholar

[27]

D. Ruelle, Historical behaviour in smooth dynamical systems,, in Global Analysis of Dynamical Systems, (2001), 63.   Google Scholar

[28]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets,, Ergodic Theory Dynam. Systems, 23 (2003), 317.  doi: 10.1017/S0143385702000913.  Google Scholar

[29]

D. Thompson, The irregular set for maps with the specification property has full topological pressure,, Dynamical Systems: An International Journal, 25 (2010), 25.  doi: 10.1080/14689360903156237.  Google Scholar

[30]

D. Thompson, Irregular sets, the $\beta$-transformation and the almost specification property,, Trans. Amer. Math. Soc., 364 (2012), 5395.  doi: 10.1090/S0002-9947-2012-05540-1.  Google Scholar

[31]

P. Varandas, Non-uniform specification and large deviations for weak Gibbs measures,, J. Stat. Phys., 146 (2012), 330.  doi: 10.1007/s10955-011-0392-7.  Google Scholar

[32]

L. Young, Large deviations in dynamical systems,, Trans. Amer. Math. Soc., 318 (1990), 525.  doi: 10.2307/2001318.  Google Scholar

[33]

X. Zhou and E. Chen, Multifractal analysis for the historic set in topological dynamical systems,, Nonlinearity, 26 (2013), 1975.  doi: 10.1088/0951-7715/26/7/1975.  Google Scholar

show all references

References:
[1]

J. Barral and M. Mensi, Gibbs measures on self-affine Sierpiński carpets and their singularity spectrum,, Ergodic Theory Dynam. Systems, 27 (2007), 1419.  doi: 10.1017/S0143385706001027.  Google Scholar

[2]

L. Barreira and Y. Pesin, Lyapunov Exponents and Smooth Ergodic Theory,, University Lecture Series, (2002).  doi: 10.1090/ulect/023.  Google Scholar

[3]

L. Barreira and Y. Pesin, Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents,, Encyclopedia of Mathematics and its Applications, (2007).  doi: 10.1017/CBO9781107326026.  Google Scholar

[4]

L. Barreira and B. Saussol, Variational principles and mixed multifractal spectra,, Trans. Amer. Math. Soc, 353 (2001), 3919.  doi: 10.1090/S0002-9947-01-02844-6.  Google Scholar

[5]

L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension,, Israel J. Math., 116 (2000), 29.  doi: 10.1007/BF02773211.  Google Scholar

[6]

J. Bochi, Genericity of zero Lyapunov exponents,, Ergodic Theory Dynam. Systems, 22 (2002), 1667.  doi: 10.1017/S0143385702001165.  Google Scholar

[7]

T. Bomfim and P. Varandas, Multifractal analysis for weak Gibbs measures: from large deviations to irregular sets,, Ergodic Theory Dynam. Systems., ().  doi: 10.1017/etds.2015.46.  Google Scholar

[8]

R. Bowen, Topological entropy for noncompact sets,, Trans. Amer. Math. Soc., 184 (1973), 125.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[9]

E. Chen, T. Kupper and L. Shu, Topological entropy for divergence points,, Ergodic Theory Dynam. Systems, 25 (2005), 1173.  doi: 10.1017/S0143385704000872.  Google Scholar

[10]

V. Climenhaga, Topological pressure of simultaneous level sets,, Nonlinearity, 26 (2013), 241.  doi: 10.1088/0951-7715/26/1/241.  Google Scholar

[11]

D. Feng, K. Lau and J. Wu, Ergodic limits on the conformal repellers,, Adv. Math., 169 (2002), 58.  doi: 10.1006/aima.2001.2054.  Google Scholar

[12]

M. Hirayama, Periodic probability measures are dense in the set of invariant measures,, Discrete Continuous Dynam. Systems - A, 9 (2003), 1185.  doi: 10.3934/dcds.2003.9.1185.  Google Scholar

[13]

T. Jordan and M. Rams, Multifractal analysis for Bedford-McMullen carpets,, Math. Proc. Camb. Phil. Soc., 150 (2011), 147.  doi: 10.1017/S0305004110000472.  Google Scholar

[14]

A. Katok, Bernoulli diffeomorphisms on surfaces,, Annals of Math. (2), 110 (1979), 529.  doi: 10.2307/1971237.  Google Scholar

[15]

A. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphism,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.   Google Scholar

[16]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[17]

C. Liang, G. Liao, W. Sun and X. Tian, Saturated sets for nonuniformly hyperbolic systems,, preprint, ().   Google Scholar

[18]

L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages,, J. Math. Pures Appl., 82 (2003), 1591.  doi: 10.1016/j.matpur.2003.09.007.  Google Scholar

[19]

L. Olsen, Self-affine multifractal Sierpinski sponges in $\mathbbR^d$,, Pacific J. Math., 183 (1998), 143.  doi: 10.2140/pjm.1998.183.143.  Google Scholar

[20]

V. Oseledec, A multiplicative ergodic theorem,, Trans. Mosc. Math. Soc., 19 (1968), 179.   Google Scholar

[21]

Y. Pei and E. Chen, On the variational principle for the topological pressure for certain non-compact sets,, Sci. China Math., 53 (2010), 1117.  doi: 10.1007/s11425-009-0109-4.  Google Scholar

[22]

Y. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications,, University of Chicago Press, (1997).  doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar

[23]

Y. Pesin and B. Pitskel, Topological pressure and the variational principle for noncompact sets,, Functional Anal. Appl., 18 (1984), 307.  doi: 10.1007/BF01083692.  Google Scholar

[24]

C. Pfister and W. Sullivan, On the topological entropy of saturated sets,, Ergodic Theory Dynam. Systems, 27 (2007), 929.  doi: 10.1017/S0143385706000824.  Google Scholar

[25]

M. Pollicott, Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds,, London Mathematical Society Lecture Note Series, (1993).  doi: 10.1017/CBO9780511752537.  Google Scholar

[26]

H. Reeve, The packing spectrum for Birkhoff averages on a self-affine repeller,, Ergodic Theory Dynam. Systems, 32 (2012), 1444.  doi: 10.1017/S0143385711000368.  Google Scholar

[27]

D. Ruelle, Historical behaviour in smooth dynamical systems,, in Global Analysis of Dynamical Systems, (2001), 63.   Google Scholar

[28]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets,, Ergodic Theory Dynam. Systems, 23 (2003), 317.  doi: 10.1017/S0143385702000913.  Google Scholar

[29]

D. Thompson, The irregular set for maps with the specification property has full topological pressure,, Dynamical Systems: An International Journal, 25 (2010), 25.  doi: 10.1080/14689360903156237.  Google Scholar

[30]

D. Thompson, Irregular sets, the $\beta$-transformation and the almost specification property,, Trans. Amer. Math. Soc., 364 (2012), 5395.  doi: 10.1090/S0002-9947-2012-05540-1.  Google Scholar

[31]

P. Varandas, Non-uniform specification and large deviations for weak Gibbs measures,, J. Stat. Phys., 146 (2012), 330.  doi: 10.1007/s10955-011-0392-7.  Google Scholar

[32]

L. Young, Large deviations in dynamical systems,, Trans. Amer. Math. Soc., 318 (1990), 525.  doi: 10.2307/2001318.  Google Scholar

[33]

X. Zhou and E. Chen, Multifractal analysis for the historic set in topological dynamical systems,, Nonlinearity, 26 (2013), 1975.  doi: 10.1088/0951-7715/26/7/1975.  Google Scholar

[1]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[2]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[3]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[4]

Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

[5]

Lan Wen. On the preperiodic set. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237

[6]

Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421

[7]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[8]

Nancy Guelman, Jorge Iglesias, Aldo Portela. Examples of minimal set for IFSs. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5253-5269. doi: 10.3934/dcds.2017227

[9]

Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure & Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211

[10]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[11]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[12]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[13]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[14]

Sanjit Chatterjee, Chethan Kamath, Vikas Kumar. Private set-intersection with common set-up. Advances in Mathematics of Communications, 2018, 12 (1) : 17-47. doi: 10.3934/amc.2018002

[15]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[16]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[17]

Maxim Arnold, Walter Craig. On the size of the Navier - Stokes singular set. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1165-1178. doi: 10.3934/dcds.2010.28.1165

[18]

Michel Crouzeix. The annulus as a K-spectral set. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2291-2303. doi: 10.3934/cpaa.2012.11.2291

[19]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[20]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]