    November  2016, 36(11): 6599-6622. doi: 10.3934/dcds.2016086

## Weakly hyperbolic invariant tori for two dimensional quasiperiodically forced maps in a degenerate case

 1 School of Mathematics and Statistics, Qingdao University, Qingdao, Shandong 266071, China 2 Departament of Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Barcelona 3 School of Mathematics, Shandong University, Jinan, Shandong 250100

Received  November 2013 Revised  May 2016 Published  August 2016

In this work we consider a class of degenerate analytic maps of the form \begin{eqnarray*} \left\{ \begin{array}{l} \bar{x} =x+y^{m}+\epsilon f_1(x,y,\theta,\epsilon)+h_1(x,y,\theta,\epsilon),\\ \bar{y}=y+x^{n}+\epsilon f_2(x,y,\theta,\epsilon)+h_2(x,y,\theta,\epsilon),\\ \bar{\theta}=\theta+\omega, \end{array} \right. \end{eqnarray*} where $mn>1,n\geq m,$ $h_1 \ \mbox{and} \ h_2$ are of order $n+1$ in $z,$ and $\omega=(\omega_1,\omega_2,\ldots,\omega_{d})\in \Bbb{R}^{d}$ is a vector of rationally independent frequencies. It is shown that, under a generic non-degeneracy condition on $f$, if $\omega$ is Diophantine and $\epsilon>0$ is small enough, the map has at least one weakly hyperbolic invariant torus.
Citation: Tingting Zhang, Àngel Jorba, Jianguo Si. Weakly hyperbolic invariant tori for two dimensional quasiperiodically forced maps in a degenerate case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6599-6622. doi: 10.3934/dcds.2016086
##### References:
  I. Baldomà, E. Fontich and P. Martín, Stable manifolds for parabolic points through the parameterization method,, Preprint., ().   Google Scholar  M. Ding, C. Grebogi and E. Ott, Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange non-chaotic to chaotic,, Phys. Rev. A, 39 (1989), 2593.  doi: 10.1103/PhysRevA.39.2593. Google Scholar  P. Glendinning, The non-smooth pitchork bifurcation,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2002), 1.   Google Scholar  M. Guardia, P. Martín and T.M. Seara, Oscillatory motions for the restricted planar circular three body problem,, Invent. Math., 203 (2016), 417.  doi: 10.1007/s00222-015-0591-y.  Google Scholar  À. Haro and J. Puig, Strange nonchaotic attractors in Harper maps,, Chaos, 16 (2006).  doi: 10.1063/1.2259821.  Google Scholar  À. Jorba, P. Rabassa and J. C. Tatjer, Superstable periodic orbits of 1d maps under quasi-periodic forcing and reducibility loss,, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 589.  doi: 10.3934/dcds.2014.34.589.  Google Scholar  À. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients,, J. Differential Equations, 98 (1992), 111.  doi: 10.1016/0022-0396(92)90107-X.  Google Scholar  À. Jorba and C. Simó, On quasiperiodic perturbations of elliptic equilibrium points,, SIAM J. Math. Anal., 27 (1996), 1704.  doi: 10.1137/S0036141094276913.  Google Scholar  À. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537.  doi: 10.3934/dcdsb.2008.10.537.  Google Scholar  À. Jorba and J. Villanueva, On the persistence of lower dimensional invariant tori under quasi-periodic perturbations,, J. Nonlinear Sci., 7 (1997), 427.  doi: 10.1007/s003329900036.  Google Scholar  L. M. Lerman, On remarks of skew products over irrational rotation,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3675.  doi: 10.1142/S0218127405014118.  Google Scholar  R. Martínez and C. Pinyol, Parabolic orbits in the elliptic restricted three body problem,, J. Differential Equations, 111 (1994), 299.  doi: 10.1006/jdeq.1994.1084.  Google Scholar  R. Martínez and C. Simó, Invariant manifolds at infinity of the RTBP and the boundaries of bounded motion,, Regul. Chaotic Dyn., 19 (2014), 745.  doi: 10.1134/S1560354714060112.  Google Scholar  U. Vaidya and I. Mezić, Existence of invariant tori in three dimensional maps with degeneracy,, Phys. D, 241 (2012), 1136.  doi: 10.1016/j.physd.2012.03.004.  Google Scholar  J. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point,, J. Differential Equations, 250 (2011), 551.  doi: 10.1016/j.jde.2010.09.030.  Google Scholar  J. Xu, On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar system,, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2593.  doi: 10.3934/dcds.2013.33.2593.  Google Scholar  J. Xu and S. Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation,, Ergodic Theory Dynam. Systems, 31 (2011), 599.  doi: 10.1017/S0143385709001114.  Google Scholar  J. Xu and Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate,, Proc. Amer. Math. Soc., 126 (1998), 1445.  doi: 10.1090/S0002-9939-98-04523-7.  Google Scholar  J. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in hamiltonian systems,, Comm. Math. Phys., 192 (1998), 145.  doi: 10.1007/s002200050294.  Google Scholar

show all references

##### References:
  I. Baldomà, E. Fontich and P. Martín, Stable manifolds for parabolic points through the parameterization method,, Preprint., ().   Google Scholar  M. Ding, C. Grebogi and E. Ott, Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange non-chaotic to chaotic,, Phys. Rev. A, 39 (1989), 2593.  doi: 10.1103/PhysRevA.39.2593. Google Scholar  P. Glendinning, The non-smooth pitchork bifurcation,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2002), 1.   Google Scholar  M. Guardia, P. Martín and T.M. Seara, Oscillatory motions for the restricted planar circular three body problem,, Invent. Math., 203 (2016), 417.  doi: 10.1007/s00222-015-0591-y.  Google Scholar  À. Haro and J. Puig, Strange nonchaotic attractors in Harper maps,, Chaos, 16 (2006).  doi: 10.1063/1.2259821.  Google Scholar  À. Jorba, P. Rabassa and J. C. Tatjer, Superstable periodic orbits of 1d maps under quasi-periodic forcing and reducibility loss,, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 589.  doi: 10.3934/dcds.2014.34.589.  Google Scholar  À. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients,, J. Differential Equations, 98 (1992), 111.  doi: 10.1016/0022-0396(92)90107-X.  Google Scholar  À. Jorba and C. Simó, On quasiperiodic perturbations of elliptic equilibrium points,, SIAM J. Math. Anal., 27 (1996), 1704.  doi: 10.1137/S0036141094276913.  Google Scholar  À. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537.  doi: 10.3934/dcdsb.2008.10.537.  Google Scholar  À. Jorba and J. Villanueva, On the persistence of lower dimensional invariant tori under quasi-periodic perturbations,, J. Nonlinear Sci., 7 (1997), 427.  doi: 10.1007/s003329900036.  Google Scholar  L. M. Lerman, On remarks of skew products over irrational rotation,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3675.  doi: 10.1142/S0218127405014118.  Google Scholar  R. Martínez and C. Pinyol, Parabolic orbits in the elliptic restricted three body problem,, J. Differential Equations, 111 (1994), 299.  doi: 10.1006/jdeq.1994.1084.  Google Scholar  R. Martínez and C. Simó, Invariant manifolds at infinity of the RTBP and the boundaries of bounded motion,, Regul. Chaotic Dyn., 19 (2014), 745.  doi: 10.1134/S1560354714060112.  Google Scholar  U. Vaidya and I. Mezić, Existence of invariant tori in three dimensional maps with degeneracy,, Phys. D, 241 (2012), 1136.  doi: 10.1016/j.physd.2012.03.004.  Google Scholar  J. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point,, J. Differential Equations, 250 (2011), 551.  doi: 10.1016/j.jde.2010.09.030.  Google Scholar  J. Xu, On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar system,, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2593.  doi: 10.3934/dcds.2013.33.2593.  Google Scholar  J. Xu and S. Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation,, Ergodic Theory Dynam. Systems, 31 (2011), 599.  doi: 10.1017/S0143385709001114.  Google Scholar  J. Xu and Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate,, Proc. Amer. Math. Soc., 126 (1998), 1445.  doi: 10.1090/S0002-9939-98-04523-7.  Google Scholar  J. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in hamiltonian systems,, Comm. Math. Phys., 192 (1998), 145.  doi: 10.1007/s002200050294.  Google Scholar
  Inmaculada Baldomá, Ernest Fontich, Pau Martín. Gevrey estimates for one dimensional parabolic invariant manifolds of non-hyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4159-4190. doi: 10.3934/dcds.2017177  Helmut Rüssmann. KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 683-718. doi: 10.3934/dcdss.2010.3.683  Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233  Jordi-Lluís Figueras, Àlex Haro. A note on the fractalization of saddle invariant curves in quasiperiodic systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1095-1107. doi: 10.3934/dcdss.2016043  Anna Cima, Armengol Gasull, Víctor Mañosa. Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 889-904. doi: 10.3934/dcds.2018038  Wen Si, Fenfen Wang, Jianguo Si. Almost-periodic perturbations of non-hyperbolic equilibrium points via Pöschel-Rüssmann KAM method. Communications on Pure & Applied Analysis, 2020, 19 (1) : 541-585. doi: 10.3934/cpaa.2020027  Inmaculada Baldomá, Ernest Fontich, Rafael de la Llave, Pau Martín. The parameterization method for one- dimensional invariant manifolds of higher dimensional parabolic fixed points. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 835-865. doi: 10.3934/dcds.2007.17.835  Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568  John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443  Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371  Hongzi Cong, Lufang Mi, Yunfeng Shi, Yuan Wu. On the existence of full dimensional KAM torus for nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6599-6630. doi: 10.3934/dcds.2019287  Alexey A. Petrov, Sergei Yu. Pilyugin. Shadowing near nonhyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3761-3772. doi: 10.3934/dcds.2014.34.3761  M. Burak Erdoğan, Nikolaos Tzirakis. Long time dynamics for forced and weakly damped KdV on the torus. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2669-2684. doi: 10.3934/cpaa.2013.12.2669  M. L. Bertotti, Sergey V. Bolotin. Chaotic trajectories for natural systems on a torus. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1343-1357. doi: 10.3934/dcds.2003.9.1343  Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517  Gemma Huguet, Rafael de la Llave, Yannick Sire. Fast iteration of cocycles over rotations and computation of hyperbolic bundles. Conference Publications, 2013, 2013 (special) : 323-333. doi: 10.3934/proc.2013.2013.323  Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911  Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683  Junxiang Xu. On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2593-2619. doi: 10.3934/dcds.2013.33.2593  Michael Brin, Dmitri Burago, Sergey Ivanov. Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. Journal of Modern Dynamics, 2009, 3 (1) : 1-11. doi: 10.3934/jmd.2009.3.1

2018 Impact Factor: 1.143