December  2016, 36(12): 6645-6656. doi: 10.3934/dcds.2016088

Haldane linearisation done right: Solving the nonlinear recombination equation the easy way

1. 

Technische Fakultät, Universität Bielefeld, Postfach 100131, 33501 Bielefeld

2. 

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld

Received  February 2016 Revised  July 2016 Published  October 2016

The nonlinear recombination equation from population genetics has a long history and is notoriously difficult to solve, both in continuous and in discrete time. This is particularly so if one aims at full generality, thus also including degenerate parameter cases. Due to recent progress for the continuous time case via the identification of an underlying stochastic fragmentation process, it became clear that a direct general solution at the level of the corresponding ODE itself should also be possible. This paper shows how to do it, and how to extend the approach to the discrete-time case as well.
Citation: Ellen Baake, Michael Baake. Haldane linearisation done right: Solving the nonlinear recombination equation the easy way. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6645-6656. doi: 10.3934/dcds.2016088
References:
[1]

M. Aigner, Combinatorial Theory, reprint,, Springer, (1997).  doi: 10.1007/978-3-642-59101-3.  Google Scholar

[2]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995).   Google Scholar

[3]

E. Baake, Deterministic and stochastic aspects of single-crossover recombination,, in: Proceedings of the International Congress of Mathematicians, (2010), 3037.   Google Scholar

[4]

E. Baake, M. Baake and M. Salamat, The general recombination equation in continuous time and its solution,, Discr. Cont. Dynam. Syst. A, 36 (2016), 63.  doi: 10.3934/dcds.2016.36.63.  Google Scholar

[5]

M. Baake, Recombination semigroups on measure spaces},, Monatsh. Math., 146 (2005), 267.  doi: 10.1007/s00605-005-0326-z.  Google Scholar

[6]

M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection,, Can. J. Math., 55 (2003), 3.  doi: 10.4153/CJM-2003-001-0.  Google Scholar

[7]

M. Baake and E. Shamsara, The recombination equation for interval partitions,, preprint, ().   Google Scholar

[8]

J. H. Bennett, On the theory of random mating,, Ann. Human Gen., 18 (1954), 311.   Google Scholar

[9]

R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation,, Wiley, (2000).   Google Scholar

[10]

F. B. Christiansen, Population Genetics of Multiple Loci,, Wiley, (1999).   Google Scholar

[11]

K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components,, Theor. Popul. Biol., 58 (2000), 1.  doi: 10.1006/tpbi.2000.1471.  Google Scholar

[12]

K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics,, Lin. Alg. Appl., 348 (2002), 115.  doi: 10.1016/S0024-3795(01)00586-9.  Google Scholar

[13]

H. Geiringer, On the probability theory of linkage in Mendelian heredity,, Ann. Math. Stat., 15 (1944), 25.  doi: 10.1214/aoms/1177731313.  Google Scholar

[14]

H. S. Jennings, The numerical results of diverse systems of breeding, with respect to two pairs of characters, linked or independent, with special relation to the effects of linkage., Genetics, 2 (1917), 97.   Google Scholar

[15]

Y. I. Lyubich, Mathematical Structures in Population Genetics,, Springer, (1992).  doi: 10.1007/978-3-642-76211-6.  Google Scholar

[16]

S. Martínez, A probabilistic analysis of a discrete-time evolution in recombination, preprint,, , ().   Google Scholar

[17]

D. McHale and G. A. Ringwood, Haldane linearisation of baric algebras,, J. London Math. Soc., 28 (1983), 17.  doi: 10.1112/jlms/s2-28.1.17.  Google Scholar

[18]

T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection,, J. Math. Biol., 38 (1999), 103.  doi: 10.1007/s002850050143.  Google Scholar

[19]

J. R. Norris, Markov Chains,, Cambridge University Press, (1998).   Google Scholar

[20]

R. B. Robbins, Some applications of mathematics to breeding problems III., Genetics, 3 (1918), 375.   Google Scholar

[21]

U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time,, J. Math. Biol., 60 (2010), 727.  doi: 10.1007/s00285-009-0277-4.  Google Scholar

show all references

References:
[1]

M. Aigner, Combinatorial Theory, reprint,, Springer, (1997).  doi: 10.1007/978-3-642-59101-3.  Google Scholar

[2]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995).   Google Scholar

[3]

E. Baake, Deterministic and stochastic aspects of single-crossover recombination,, in: Proceedings of the International Congress of Mathematicians, (2010), 3037.   Google Scholar

[4]

E. Baake, M. Baake and M. Salamat, The general recombination equation in continuous time and its solution,, Discr. Cont. Dynam. Syst. A, 36 (2016), 63.  doi: 10.3934/dcds.2016.36.63.  Google Scholar

[5]

M. Baake, Recombination semigroups on measure spaces},, Monatsh. Math., 146 (2005), 267.  doi: 10.1007/s00605-005-0326-z.  Google Scholar

[6]

M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection,, Can. J. Math., 55 (2003), 3.  doi: 10.4153/CJM-2003-001-0.  Google Scholar

[7]

M. Baake and E. Shamsara, The recombination equation for interval partitions,, preprint, ().   Google Scholar

[8]

J. H. Bennett, On the theory of random mating,, Ann. Human Gen., 18 (1954), 311.   Google Scholar

[9]

R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation,, Wiley, (2000).   Google Scholar

[10]

F. B. Christiansen, Population Genetics of Multiple Loci,, Wiley, (1999).   Google Scholar

[11]

K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components,, Theor. Popul. Biol., 58 (2000), 1.  doi: 10.1006/tpbi.2000.1471.  Google Scholar

[12]

K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics,, Lin. Alg. Appl., 348 (2002), 115.  doi: 10.1016/S0024-3795(01)00586-9.  Google Scholar

[13]

H. Geiringer, On the probability theory of linkage in Mendelian heredity,, Ann. Math. Stat., 15 (1944), 25.  doi: 10.1214/aoms/1177731313.  Google Scholar

[14]

H. S. Jennings, The numerical results of diverse systems of breeding, with respect to two pairs of characters, linked or independent, with special relation to the effects of linkage., Genetics, 2 (1917), 97.   Google Scholar

[15]

Y. I. Lyubich, Mathematical Structures in Population Genetics,, Springer, (1992).  doi: 10.1007/978-3-642-76211-6.  Google Scholar

[16]

S. Martínez, A probabilistic analysis of a discrete-time evolution in recombination, preprint,, , ().   Google Scholar

[17]

D. McHale and G. A. Ringwood, Haldane linearisation of baric algebras,, J. London Math. Soc., 28 (1983), 17.  doi: 10.1112/jlms/s2-28.1.17.  Google Scholar

[18]

T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection,, J. Math. Biol., 38 (1999), 103.  doi: 10.1007/s002850050143.  Google Scholar

[19]

J. R. Norris, Markov Chains,, Cambridge University Press, (1998).   Google Scholar

[20]

R. B. Robbins, Some applications of mathematics to breeding problems III., Genetics, 3 (1918), 375.   Google Scholar

[21]

U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time,, J. Math. Biol., 60 (2010), 727.  doi: 10.1007/s00285-009-0277-4.  Google Scholar

[1]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[2]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[3]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[4]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[5]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[6]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[7]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[8]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[11]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[12]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[13]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[14]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[15]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[16]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[17]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[18]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[19]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]