\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm

Abstract / Introduction Related Papers Cited by
  • We provide a general framework to study differentiability of SRB measures for one dimensional non-uniformly expanding maps. Our technique is based on inducing the non-uniformly expanding system to a uniformly expanding one, and on showing how the linear response formula of the non-uniformly expanding system is inherited from the linear response formula of the induced one. We apply this general technique to interval maps with a neutral fixed point (Pomeau-Manneville maps) to prove differentiability of the corresponding SRB measure. Our work covers systems that admit a finite SRB measure and it also covers systems that admit an infinite SRB measure. In particular, we obtain a linear response formula for both finite and infinite SRB measures. To the best of our knowledge, this is the first work that contains a linear response result for infinite measure preserving systems.
    Mathematics Subject Classification: Primary: 37A05, 37E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. Bahsoun, C. Bose and Y. Duan, Rigorous Pointwise approximations for invariant densities of nonuniformly expanding maps, Ergodic Theory and Dynamical Systems, 35 (2015), 1028-1044.doi: 10.1017/etds.2013.91.

    [2]

    W. Bahsoun, S. Galatolo, I. Nisoli and X. Niu, A Rigorous Computational Approach to Linear Response, Available at http://arxiv.org/abs/1506.08661

    [3]

    W. Bahsoun and S. Vaienti, Metastability of certain intermittent maps, Nonlinearity, 25 (2012), 107-124.doi: 10.1088/0951-7715/25/1/107.

    [4]

    V. Baladi, On the susceptibility function of piecewise expanding interval maps, Comm. Math. Phy., 275 (2007), 839-859.doi: 10.1007/s00220-007-0320-5.

    [5]

    V. Baladi, Linear response, or else, Available at http://arxiv.org/pdf/1408.2937v1.pdf

    [6]

    V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps, Nonlinearity, 21 (2008), 677-711.doi: 10.1088/0951-7715/21/4/003.

    [7]

    V. Baladi and M. Todd, Linear response for intermittent maps, Comm. Math. Phy., 347, (2016), 857-874.

    [8]

    O. Butterley and C. Liverani, Smooth Anosov flows: Correlation spectra and stability, J. Mod. Dyn., 1 (2007), 301-322.doi: 10.3934/jmd.2007.1.301.

    [9]

    D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems, Invent. Math., 155 (2004), 389-449.doi: 10.1007/s00222-003-0324-5.

    [10]

    S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217.doi: 10.1017/S0143385705000374.

    [11]

    A. Katok, G. Knieper, M. Pollicott and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math., 98 (1989), 581-597.doi: 10.1007/BF01393838.

    [12]

    A. Korepanov, Linear response for intermittent maps with summable and nonsummable decay of correlations, Nonlinearity, 29 (2016), 1735-1754, Available at http://arxiv.org/abs/1508.06571.doi: 10.1088/0951-7715/29/6/1735.

    [13]

    C. Liverani, Invariant measures and their properties. a functional analytic point of view, Dynamical systems., Part II, 185-237, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003.

    [14]

    C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic theory Dynam. System, 19 (1999), 671-685.doi: 10.1017/S0143385799133856.

    [15]

    Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74 (1980), 189-197.doi: 10.1007/BF01197757.

    [16]

    D. Ruelle, Differentiation of SRB states, Comm. Math. Phys., 187 (1997), 227-241.doi: 10.1007/s002200050134.

    [17]

    L.-S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188.doi: 10.1007/BF02808180.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return