• Previous Article
    Stability of global equilibrium for the multi-species Boltzmann equation in $L^\infty$ settings
  • DCDS Home
  • This Issue
  • Next Article
    Haldane linearisation done right: Solving the nonlinear recombination equation the easy way
December  2016, 36(12): 6657-6668. doi: 10.3934/dcds.2016089

Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm

1. 

Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU

2. 

Université de Brest, Laboratoire de Mathématiques de Bretagne Atlantique, CNRS UMR 6205, Brest, France

Received  January 2016 Revised  July 2016 Published  October 2016

We provide a general framework to study differentiability of SRB measures for one dimensional non-uniformly expanding maps. Our technique is based on inducing the non-uniformly expanding system to a uniformly expanding one, and on showing how the linear response formula of the non-uniformly expanding system is inherited from the linear response formula of the induced one. We apply this general technique to interval maps with a neutral fixed point (Pomeau-Manneville maps) to prove differentiability of the corresponding SRB measure. Our work covers systems that admit a finite SRB measure and it also covers systems that admit an infinite SRB measure. In particular, we obtain a linear response formula for both finite and infinite SRB measures. To the best of our knowledge, this is the first work that contains a linear response result for infinite measure preserving systems.
Citation: Wael Bahsoun, Benoît Saussol. Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6657-6668. doi: 10.3934/dcds.2016089
References:
[1]

W. Bahsoun, C. Bose and Y. Duan, Rigorous Pointwise approximations for invariant densities of nonuniformly expanding maps,, Ergodic Theory and Dynamical Systems, 35 (2015), 1028. doi: 10.1017/etds.2013.91. Google Scholar

[2]

W. Bahsoun, S. Galatolo, I. Nisoli and X. Niu, A Rigorous Computational Approach to Linear Response,, Available at , (). Google Scholar

[3]

W. Bahsoun and S. Vaienti, Metastability of certain intermittent maps,, Nonlinearity, 25 (2012), 107. doi: 10.1088/0951-7715/25/1/107. Google Scholar

[4]

V. Baladi, On the susceptibility function of piecewise expanding interval maps,, Comm. Math. Phy., 275 (2007), 839. doi: 10.1007/s00220-007-0320-5. Google Scholar

[5]

V. Baladi, Linear response, or else,, Available at , (). Google Scholar

[6]

V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps,, Nonlinearity, 21 (2008), 677. doi: 10.1088/0951-7715/21/4/003. Google Scholar

[7]

V. Baladi and M. Todd, Linear response for intermittent maps,, Comm. Math. Phy., 347 (2016), 857. Google Scholar

[8]

O. Butterley and C. Liverani, Smooth Anosov flows: Correlation spectra and stability,, J. Mod. Dyn., 1 (2007), 301. doi: 10.3934/jmd.2007.1.301. Google Scholar

[9]

D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems,, Invent. Math., 155 (2004), 389. doi: 10.1007/s00222-003-0324-5. Google Scholar

[10]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems,, Ergodic Theory Dynam. Systems, 26 (2006), 189. doi: 10.1017/S0143385705000374. Google Scholar

[11]

A. Katok, G. Knieper, M. Pollicott and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows,, Invent. Math., 98 (1989), 581. doi: 10.1007/BF01393838. Google Scholar

[12]

A. Korepanov, Linear response for intermittent maps with summable and nonsummable decay of correlations,, Nonlinearity, 29 (2016), 1735. doi: 10.1088/0951-7715/29/6/1735. Google Scholar

[13]

C. Liverani, Invariant measures and their properties. a functional analytic point of view,, Dynamical systems., (2003), 185. Google Scholar

[14]

C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency,, Ergodic theory Dynam. System, 19 (1999), 671. doi: 10.1017/S0143385799133856. Google Scholar

[15]

Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems,, Comm. Math. Phys., 74 (1980), 189. doi: 10.1007/BF01197757. Google Scholar

[16]

D. Ruelle, Differentiation of SRB states,, Comm. Math. Phys., 187 (1997), 227. doi: 10.1007/s002200050134. Google Scholar

[17]

L.-S. Young, Recurrence times and rates of mixing,, Israel J. Math., 110 (1999), 153. doi: 10.1007/BF02808180. Google Scholar

show all references

References:
[1]

W. Bahsoun, C. Bose and Y. Duan, Rigorous Pointwise approximations for invariant densities of nonuniformly expanding maps,, Ergodic Theory and Dynamical Systems, 35 (2015), 1028. doi: 10.1017/etds.2013.91. Google Scholar

[2]

W. Bahsoun, S. Galatolo, I. Nisoli and X. Niu, A Rigorous Computational Approach to Linear Response,, Available at , (). Google Scholar

[3]

W. Bahsoun and S. Vaienti, Metastability of certain intermittent maps,, Nonlinearity, 25 (2012), 107. doi: 10.1088/0951-7715/25/1/107. Google Scholar

[4]

V. Baladi, On the susceptibility function of piecewise expanding interval maps,, Comm. Math. Phy., 275 (2007), 839. doi: 10.1007/s00220-007-0320-5. Google Scholar

[5]

V. Baladi, Linear response, or else,, Available at , (). Google Scholar

[6]

V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps,, Nonlinearity, 21 (2008), 677. doi: 10.1088/0951-7715/21/4/003. Google Scholar

[7]

V. Baladi and M. Todd, Linear response for intermittent maps,, Comm. Math. Phy., 347 (2016), 857. Google Scholar

[8]

O. Butterley and C. Liverani, Smooth Anosov flows: Correlation spectra and stability,, J. Mod. Dyn., 1 (2007), 301. doi: 10.3934/jmd.2007.1.301. Google Scholar

[9]

D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems,, Invent. Math., 155 (2004), 389. doi: 10.1007/s00222-003-0324-5. Google Scholar

[10]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems,, Ergodic Theory Dynam. Systems, 26 (2006), 189. doi: 10.1017/S0143385705000374. Google Scholar

[11]

A. Katok, G. Knieper, M. Pollicott and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows,, Invent. Math., 98 (1989), 581. doi: 10.1007/BF01393838. Google Scholar

[12]

A. Korepanov, Linear response for intermittent maps with summable and nonsummable decay of correlations,, Nonlinearity, 29 (2016), 1735. doi: 10.1088/0951-7715/29/6/1735. Google Scholar

[13]

C. Liverani, Invariant measures and their properties. a functional analytic point of view,, Dynamical systems., (2003), 185. Google Scholar

[14]

C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency,, Ergodic theory Dynam. System, 19 (1999), 671. doi: 10.1017/S0143385799133856. Google Scholar

[15]

Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems,, Comm. Math. Phys., 74 (1980), 189. doi: 10.1007/BF01197757. Google Scholar

[16]

D. Ruelle, Differentiation of SRB states,, Comm. Math. Phys., 187 (1997), 227. doi: 10.1007/s002200050134. Google Scholar

[17]

L.-S. Young, Recurrence times and rates of mixing,, Israel J. Math., 110 (1999), 153. doi: 10.1007/BF02808180. Google Scholar

[1]

Malo Jézéquel. Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 927-958. doi: 10.3934/dcds.2019039

[2]

Harsh Vardhan Jain, Avner Friedman. Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 945-967. doi: 10.3934/dcdsb.2013.18.945

[3]

Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517

[4]

Matthieu Porte. Linear response for Dirac observables of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1799-1819. doi: 10.3934/dcds.2019078

[5]

Xing Li, Chungen Shen, Lei-Hong Zhang. A projected preconditioned conjugate gradient method for the linear response eigenvalue problem. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 389-412. doi: 10.3934/naco.2018025

[6]

Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533

[7]

T. Gilbert, J. R. Dorfman. On the parametric dependences of a class of non-linear singular maps. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 391-406. doi: 10.3934/dcdsb.2004.4.391

[8]

Michiko Yuri. Polynomial decay of correlations for intermittent sofic systems. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 445-464. doi: 10.3934/dcds.2008.22.445

[9]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 941-966. doi: 10.3934/dcds.2018040

[10]

Laura Gardini, Roya Makrooni, Iryna Sushko. Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 701-729. doi: 10.3934/dcdsb.2018039

[11]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[12]

Alacia M. Voth, John G. Alford, Edward W. Swim. Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer. Mathematical Biosciences & Engineering, 2017, 14 (3) : 777-804. doi: 10.3934/mbe.2017043

[13]

Long Zhang, Gao Xu, Zhidong Teng. Intermittent dispersal population model with almost period parameters and dispersal delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2011-2037. doi: 10.3934/dcdsb.2016034

[14]

Yu-Xia Wang, Wan-Tong Li. Spatial degeneracy vs functional response. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2811-2837. doi: 10.3934/dcdsb.2016074

[15]

Tamar Friedlander, Naama Brenner. Adaptive response and enlargement of dynamic range. Mathematical Biosciences & Engineering, 2011, 8 (2) : 515-528. doi: 10.3934/mbe.2011.8.515

[16]

Yong Ren, Wensheng Yin. Quasi sure exponential stabilization of nonlinear systems via intermittent $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5871-5883. doi: 10.3934/dcdsb.2019110

[17]

Yaofeng Su. Almost surely invariance principle for non-stationary and random intermittent dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6585-6597. doi: 10.3934/dcds.2019286

[18]

Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185

[19]

Gérard Gagneux, Olivier Millet. A geological delayed response model for stratigraphic reconstructions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 457-474. doi: 10.3934/dcdss.2016007

[20]

Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]