Citation: |
[1] |
C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841, URL http://projecteuclid.org/getRecord?id=euclid.rmi/1136999132.doi: 10.4171/RMI/436. |
[2] |
A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann equation for hard spheres, Eur. J. Mech. B Fluids, 18 (1999), 869-887.doi: 10.1016/S0997-7546(99)00121-1. |
[3] |
A. Bobylev, I. Gamba and V. Panferov, Moment inequalities and high-energy tails for boltzmann equations with inelastic interactions, Journal of Statistical Physics, 116 (2004), 1651-1682.doi: 10.1023/B:JOSS.0000041751.11664.ea. |
[4] |
L. Boudin, B. Grec, M. Pavić and F. Salvarani, Diffusion asymptotics of a kinetic model for gaseous mixtures, Kinetic and Related Models, 6 (2013), 137-157, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=8004.doi: 10.3934/krm.2013.6.137. |
[5] |
L. Boudin, B. Grec and F. Salvarani, The maxwell-stefan diffusion limit for a kinetic model of mixtures, Acta Applicandae Mathematicae, 136 (2015), 79-90.doi: 10.1007/s10440-014-9886-z. |
[6] |
M. Briant, Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions, Preprint 2015. |
[7] |
M. Briant and E. Daus, The Boltzmann equation for multi-species mixture close to global equilibrium, Arch. Ration. Mech. Anal., 222 (2016), 1367-1443.doi: 10.1007/s00205-016-1023-x. |
[8] |
M. Briant and Y. Guo, Asymptotic stability of the boltzmann equation with maxwell boundary conditions, Preprint 2016. |
[9] |
C. Cercignani, The Boltzmann Equation and Its Applications, vol. 67 of Applied Mathematical Sciences, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4612-1039-9. |
[10] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4419-8524-8. |
[11] |
E. S. Daus, A. Jüngel, C. Mouhot and N. Zamponi, Hypocoercivity for a linearized multispecies Boltzmann system, SIAM J. Math. Anal., 48 (2016), 538-568.doi: 10.1137/15M1017934. |
[12] |
L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236.doi: 10.1016/j.euromechflu.2004.07.004. |
[13] |
I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013. |
[14] |
H. Grad, Principles of the kinetic theory of gases, in Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin, 1958, 205-294. |
[15] |
M. P. Gualdani, S. Mischler and C. Mouhot, Factorization for non-symmetric operators and exponential H-theorem, arXiv:1006.5523, Preprint 2013. |
[16] |
O. E. Lanford III, Time evolution of large classical systems, in Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), Springer, Berlin, Lecture Notes in Phys., 38 (1975), 1-111. |
[17] |
C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348.doi: 10.1080/03605300600635004. |
[18] |
M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys., 26 (2014), 1450001, 64pp.doi: 10.1142/S0129055X14500019. |
[19] |
S. Ukai and T. Yang, Mathematical Theory of the Boltzmann Equation, 2006, Lecture Notes Series, no. 8, Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong. |
[20] |
C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid dynamics, North-Holland, Amsterdam, 1 (2002), 71-305.doi: 10.1016/S1874-5792(02)80004-0. |