Citation: |
[1] |
M. Avellaneda and F. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40 (1987), 803-847.doi: 10.1002/cpa.3160400607. |
[2] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, AMS Chelsea Publishing, Providence, RI, 2011.doi: 10.1090/chel/374. |
[3] |
S. Byun and L. Wang, Parabolic equations in Reifenberg domains, Arch. Ration. Mech. Anal., 176 (2005), 271-301.doi: 10.1007/s00205-005-0357-6. |
[4] |
S. Byun and S. Ryu, Global estimates in Orlicz spaces for the gradient of solutions to parabolic systems, Proc. Amer. Math. Soc., 138 (2010), 641-653.doi: 10.1090/S0002-9939-09-10094-1. |
[5] |
V. Bögelein and M. Parviainen, Self-improving property of nonlinear higher order parabolic systems near the boundary, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 21-54.doi: 10.1007/s00030-009-0038-5. |
[6] |
L. A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, RI, 1995.doi: 10.1090/coll/043. |
[7] |
L. A. Caffarelli and I. Peral, On $W^{1,p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), 1-21.doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G. |
[8] |
E. DiBenedetto, Degenerate Parabolic Equations, Universitext. Springer-Verlag, New York, 1993. xvi+387 pp.doi: 10.1007/978-1-4612-0895-2. |
[9] |
J. Geng and Z. Shen, Uniform regularity estimates in parabolic homogenization, Indiana Univ. Math. J., 64 (2015), 697-733.doi: 10.1512/iumj.2015.64.5503. |
[10] |
E. R. Reifenberg, Solution of the Plateau Problem for m -dimensional surfaces of varying topological type, Acta Math., 104 (1960), 1-92.doi: 10.1007/BF02547186. |
[11] |
T. Toro, Doubling and flatness: geometry of measures, Notices Amer. Math. Soc., 44 (1997), 1087-1094. |
[12] |
L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.), 19 (2003), 381-396.doi: 10.1007/s10114-003-0264-4. |