December  2016, 36(12): 6715-6736. doi: 10.3934/dcds.2016092

Normal forms of planar switching systems

1. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China, China

Received  November 2014 Revised  August 2016 Published  October 2016

In this paper we study normal forms of planar differential systems with a non-degenerate equilibrium on a single switching line, i.e., the equilibrium is a non-degenerate equilibrium of both the upper system and the lower one. In the sense of $C^0$ conjugation we find all normal forms for linear switching systems and use them together with switching near-identity transformations to normalize second order terms, showing the reduction of normal forms. We prove that only one of those 19 types of linear normal form decides if the system is monodromic. With the monodromic linear normal form, we compute the second order monodromic normal form, which gives a condition under which exactly one limit cycle arises from a Hopf bifurcation.
Citation: Xingwu Chen, Weinian Zhang. Normal forms of planar switching systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6715-6736. doi: 10.3934/dcds.2016092
References:
[1]

D. V. Anosov and V. I. Arnold, Dynamical Systems I: Ordinary Differential Equations and Smooth Dynamical Systems,, Encyclopedia of Mathematical Science, (1988).  doi: 10.1007/978-3-642-61551-1.  Google Scholar

[2]

S. Banerjee and G. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control,, Wiley-IEEE Press, (2001).  doi: 10.1109/9780470545393.  Google Scholar

[3]

M. di Bernardo, C. J. Budd and A. R. Champneys, Grazing, skipping and sliding: Analysis of the nonsmooth dynamics of the dc/dc buck converter,, Nonlinearity, 11 (1998), 859.  doi: 10.1088/0951-7715/11/4/007.  Google Scholar

[4]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems, Theory and Applications,, Springer, (2008).   Google Scholar

[5]

B. Brogliato, Nonsmooth Mechanics,, Models, (2016).  doi: 10.1007/978-3-319-28664-8.  Google Scholar

[6]

C. J. Budd, Non-smooth dynamical systems and the grazing bifurcation,, in Nonlinear Mathematics and Its Applications (Guildford, (1995), 219.   Google Scholar

[7]

X. Chen and Z. Du, Limit cycles bifurcate from centers of discontinuous quadratic systems,, Comput. Math. Appl., 59 (2010), 3836.  doi: 10.1016/j.camwa.2010.04.019.  Google Scholar

[8]

X. Chen and W. Zhang, Isochronicity of centers in a switching Bautin system,, J. Differential Equa., 252 (2012), 2877.  doi: 10.1016/j.jde.2011.10.013.  Google Scholar

[9]

S.-N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields,, Cambridge University Press, (1994).  doi: 10.1017/CBO9780511665639.  Google Scholar

[10]

B. Coll, A. Gasull and R. Prohens, Center-focus and isochronous center problems for discontinuous differential equations,, Discrete Contin. Dyn. Syst., 6 (2000), 609.  doi: 10.3934/dcds.2000.6.609.  Google Scholar

[11]

B. Coll, A. Gasull and R. Prohens, Degenerate Hopf bifurcations in discontinuous planar systems,, J. Math. Anal. Appl., 253 (2001), 671.  doi: 10.1006/jmaa.2000.7188.  Google Scholar

[12]

A. F. Filippov, Differential Equation with Discontinuous Righthand Sides,, Kluwer Academic, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[13]

I. Flügge-Lutz, Discontinuous Automatic Control,, Princeton University Press, (1953).   Google Scholar

[14]

F. Giannakopoulos and K. Pliete, Planar systems of piecewise linear differential equations with a line of discontinuity,, Nonlinearity, 14 (2001), 1611.  doi: 10.1088/0951-7715/14/6/311.  Google Scholar

[15]

A. Gasull and J. Torregrosa, Center-focus problem for discontinuous planar differential equations,, Int. J. Bifurc. Chaos, 13 (2003), 1755.  doi: 10.1142/S0218127403007618.  Google Scholar

[16]

M. Guardia, T. M. Seara and M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems,, J. Differential Equa., 250 (2011), 1967.  doi: 10.1016/j.jde.2010.11.016.  Google Scholar

[17]

J. K. Hale, Ordinary Differential Equations,, Wiley, (1969).   Google Scholar

[18]

M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems,, J. Differential Equa., 248 (2010), 2399.  doi: 10.1016/j.jde.2009.10.002.  Google Scholar

[19]

M. Kunze, Non-Smooth Dynamical Systems,, Springer, (2000).  doi: 10.1007/BFb0103843.  Google Scholar

[20]

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory,, Springer, (1998).   Google Scholar

[21]

Yu. A. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems,, Int. J. Bifurc. Chaos, 13 (2003), 2157.  doi: 10.1142/S0218127403007874.  Google Scholar

[22]

F. Mañosas and P. J. Torres, Isochronicity of a class of piecewise continuous oscillators,, Proc. Amer. Math. Soc., 133 (2005), 3027.  doi: 10.1090/S0002-9939-05-07873-1.  Google Scholar

[23]

I. I. Pleskan and K. S. Sibirskii, On the problem of the center for systems with discontinuous right-hand sides,, (Russian) Differencial'nye Uravnenija, 9 (1973), 1817.   Google Scholar

[24]

D. J. W. Simpson and J. D. Meiss, Andronov-Hopf bifurcations in planar, piecewise-smooth, continuous flows,, Phys. Lett. A, 371 (2007), 213.  doi: 10.1016/j.physleta.2007.06.046.  Google Scholar

[25]

D. Shevitz and B. Paden, Lyapunov stability theory of nonsmooth systems,, IEEE Trans. Automatic Control, 39 (1994), 1910.  doi: 10.1109/9.317122.  Google Scholar

[26]

Ya. Z. Tsypkin, Relay Control Systems,, Cambridge University Press, (1984).   Google Scholar

[27]

V. I. Utkin, Variable structure systems with sliding modes,, IEEE Trans. Automatic Control, 22 (1977), 212.   Google Scholar

[28]

Y. Zou, T. Küpper and W.-J. Beyn, Generalized Hopf bifurcation for planar Filippov systems continuous at the origin,, J. Nonlin. Sci., 16 (2006), 159.  doi: 10.1007/s00332-005-0606-8.  Google Scholar

show all references

References:
[1]

D. V. Anosov and V. I. Arnold, Dynamical Systems I: Ordinary Differential Equations and Smooth Dynamical Systems,, Encyclopedia of Mathematical Science, (1988).  doi: 10.1007/978-3-642-61551-1.  Google Scholar

[2]

S. Banerjee and G. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control,, Wiley-IEEE Press, (2001).  doi: 10.1109/9780470545393.  Google Scholar

[3]

M. di Bernardo, C. J. Budd and A. R. Champneys, Grazing, skipping and sliding: Analysis of the nonsmooth dynamics of the dc/dc buck converter,, Nonlinearity, 11 (1998), 859.  doi: 10.1088/0951-7715/11/4/007.  Google Scholar

[4]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems, Theory and Applications,, Springer, (2008).   Google Scholar

[5]

B. Brogliato, Nonsmooth Mechanics,, Models, (2016).  doi: 10.1007/978-3-319-28664-8.  Google Scholar

[6]

C. J. Budd, Non-smooth dynamical systems and the grazing bifurcation,, in Nonlinear Mathematics and Its Applications (Guildford, (1995), 219.   Google Scholar

[7]

X. Chen and Z. Du, Limit cycles bifurcate from centers of discontinuous quadratic systems,, Comput. Math. Appl., 59 (2010), 3836.  doi: 10.1016/j.camwa.2010.04.019.  Google Scholar

[8]

X. Chen and W. Zhang, Isochronicity of centers in a switching Bautin system,, J. Differential Equa., 252 (2012), 2877.  doi: 10.1016/j.jde.2011.10.013.  Google Scholar

[9]

S.-N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields,, Cambridge University Press, (1994).  doi: 10.1017/CBO9780511665639.  Google Scholar

[10]

B. Coll, A. Gasull and R. Prohens, Center-focus and isochronous center problems for discontinuous differential equations,, Discrete Contin. Dyn. Syst., 6 (2000), 609.  doi: 10.3934/dcds.2000.6.609.  Google Scholar

[11]

B. Coll, A. Gasull and R. Prohens, Degenerate Hopf bifurcations in discontinuous planar systems,, J. Math. Anal. Appl., 253 (2001), 671.  doi: 10.1006/jmaa.2000.7188.  Google Scholar

[12]

A. F. Filippov, Differential Equation with Discontinuous Righthand Sides,, Kluwer Academic, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[13]

I. Flügge-Lutz, Discontinuous Automatic Control,, Princeton University Press, (1953).   Google Scholar

[14]

F. Giannakopoulos and K. Pliete, Planar systems of piecewise linear differential equations with a line of discontinuity,, Nonlinearity, 14 (2001), 1611.  doi: 10.1088/0951-7715/14/6/311.  Google Scholar

[15]

A. Gasull and J. Torregrosa, Center-focus problem for discontinuous planar differential equations,, Int. J. Bifurc. Chaos, 13 (2003), 1755.  doi: 10.1142/S0218127403007618.  Google Scholar

[16]

M. Guardia, T. M. Seara and M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems,, J. Differential Equa., 250 (2011), 1967.  doi: 10.1016/j.jde.2010.11.016.  Google Scholar

[17]

J. K. Hale, Ordinary Differential Equations,, Wiley, (1969).   Google Scholar

[18]

M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems,, J. Differential Equa., 248 (2010), 2399.  doi: 10.1016/j.jde.2009.10.002.  Google Scholar

[19]

M. Kunze, Non-Smooth Dynamical Systems,, Springer, (2000).  doi: 10.1007/BFb0103843.  Google Scholar

[20]

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory,, Springer, (1998).   Google Scholar

[21]

Yu. A. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems,, Int. J. Bifurc. Chaos, 13 (2003), 2157.  doi: 10.1142/S0218127403007874.  Google Scholar

[22]

F. Mañosas and P. J. Torres, Isochronicity of a class of piecewise continuous oscillators,, Proc. Amer. Math. Soc., 133 (2005), 3027.  doi: 10.1090/S0002-9939-05-07873-1.  Google Scholar

[23]

I. I. Pleskan and K. S. Sibirskii, On the problem of the center for systems with discontinuous right-hand sides,, (Russian) Differencial'nye Uravnenija, 9 (1973), 1817.   Google Scholar

[24]

D. J. W. Simpson and J. D. Meiss, Andronov-Hopf bifurcations in planar, piecewise-smooth, continuous flows,, Phys. Lett. A, 371 (2007), 213.  doi: 10.1016/j.physleta.2007.06.046.  Google Scholar

[25]

D. Shevitz and B. Paden, Lyapunov stability theory of nonsmooth systems,, IEEE Trans. Automatic Control, 39 (1994), 1910.  doi: 10.1109/9.317122.  Google Scholar

[26]

Ya. Z. Tsypkin, Relay Control Systems,, Cambridge University Press, (1984).   Google Scholar

[27]

V. I. Utkin, Variable structure systems with sliding modes,, IEEE Trans. Automatic Control, 22 (1977), 212.   Google Scholar

[28]

Y. Zou, T. Küpper and W.-J. Beyn, Generalized Hopf bifurcation for planar Filippov systems continuous at the origin,, J. Nonlin. Sci., 16 (2006), 159.  doi: 10.1007/s00332-005-0606-8.  Google Scholar

[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[5]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[6]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[12]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[13]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[14]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[15]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[20]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]