    December  2016, 36(12): 6767-6780. doi: 10.3934/dcds.2016094

## Classification of positive solutions to a Lane-Emden type integral system with negative exponents

 1 School of Statistics, Xi'an University of Finance and Economics, Xi'an, Shaanxi, 710100 2 School of National Fiscal Development, Central University of Finance and Economics, Beijing 100081, China 3 School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, United States

Received  January 2016 Revised  April 2016 Published  October 2016

In this paper, we classify the positive solutions to the following Lane-Emden type integral system with negative exponents \begin{equation*} \begin{cases} u(x)&= \displaystyle \int_{\mathbb{R}^{n}}|x-y|^{\tau} u^{-p}(y)v^{-q}(y) \, dy, ~x\in \mathbb{R}^{n}, \\ v(x)&= \displaystyle \int_{\mathbb{R}^{n}}|x-y|^{\tau}u^{-r}(y)v^{-s}(y) \, dy,~ x\in \mathbb{R}^{n}, \end{cases} \end{equation*}where $n \geq 1$ is an integer and $\tau, p,q,r,s>0.$ Particularly, using an integral form of the method of moving spheres, we classify the positive solutions to the integral system whenever $$p+q=r+s=1 + 2n/\tau.$$ We also establish the non-existence of positive solutions under the condition $$\max\{p+q,r+s\} \leq 1 + 2n/\tau \,\text{ and }\, p + q + r + s < 2(1 + 2n/\tau).$$
Citation: Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094
##### References:
  G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67. doi: 10.1007/s00032-008-0090-3.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar  W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst, 12 (2005), 347-354. Google Scholar  W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.  Google Scholar  J. Dou, Liouville type theorems for the system of integral equations, Appl. Math. Comput., 217 (2010), 2586-2594. doi: 10.1016/j.amc.2010.07.071.  Google Scholar  J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not., 3 (2015), 651-687. Google Scholar  J. Dou and M. Zhu, Reversed Hardy-Littlewood-Sobolev inequality, Int. Math. Res. Not., 19 (2015), 9696-9726. doi: 10.1093/imrn/rnu241.  Google Scholar  M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal., 258 (2010), 3295-3318. doi: 10.1016/j.jfa.2010.02.003.  Google Scholar  Y. Han and M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications. J. Differential Equations, 260 (2016), 1-25. doi: 10.1016/j.jde.2015.06.032.  Google Scholar  F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383. doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar  Y. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35 (2015), 1039-1057. doi: 10.3934/dcds.2015.35.1039.  Google Scholar  Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315. doi: 10.3934/dcds.2016.36.3277.  Google Scholar  C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Soc., 144 (2016), 3731-3740. doi: 10.1090/proc/13166.  Google Scholar  C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. Partial Differential Equations, 41 (2016), 1029-1039. doi: 10.1080/03605302.2016.1190376.  Google Scholar  Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417. doi: 10.1215/S0012-7094-95-08016-8.  Google Scholar  Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87. doi: 10.1007/BF02786551.  Google Scholar  Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc. (JEMS), 6 (2004), 153-180. Google Scholar  E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.  Google Scholar  J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, J. Partial Differential Equations, 19 (2006), 256-270. Google Scholar  L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.  Google Scholar  Q. A. Ngô and V. H. Nguyen, Sharp Reversed Hardy-Littlewood-Sobolev inequality on $\mathbfR^n$,, Israel J. Math., ().   Google Scholar  J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228. doi: 10.1007/s002080050258.  Google Scholar  X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95-109. doi: 10.1016/j.jfa.2007.03.005.  Google Scholar  Z. Zhang, Positive solutions of Lane-Emden systems with negative exponents: Existence, boundary behavior and uniqueness, Nonlinear Anal., 74 (2011), 5544-5553. doi: 10.1016/j.na.2011.05.038.  Google Scholar

show all references

##### References:
  G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67. doi: 10.1007/s00032-008-0090-3.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar  W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst, 12 (2005), 347-354. Google Scholar  W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.  Google Scholar  J. Dou, Liouville type theorems for the system of integral equations, Appl. Math. Comput., 217 (2010), 2586-2594. doi: 10.1016/j.amc.2010.07.071.  Google Scholar  J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not., 3 (2015), 651-687. Google Scholar  J. Dou and M. Zhu, Reversed Hardy-Littlewood-Sobolev inequality, Int. Math. Res. Not., 19 (2015), 9696-9726. doi: 10.1093/imrn/rnu241.  Google Scholar  M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal., 258 (2010), 3295-3318. doi: 10.1016/j.jfa.2010.02.003.  Google Scholar  Y. Han and M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications. J. Differential Equations, 260 (2016), 1-25. doi: 10.1016/j.jde.2015.06.032.  Google Scholar  F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383. doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar  Y. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35 (2015), 1039-1057. doi: 10.3934/dcds.2015.35.1039.  Google Scholar  Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315. doi: 10.3934/dcds.2016.36.3277.  Google Scholar  C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Soc., 144 (2016), 3731-3740. doi: 10.1090/proc/13166.  Google Scholar  C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. Partial Differential Equations, 41 (2016), 1029-1039. doi: 10.1080/03605302.2016.1190376.  Google Scholar  Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417. doi: 10.1215/S0012-7094-95-08016-8.  Google Scholar  Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87. doi: 10.1007/BF02786551.  Google Scholar  Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc. (JEMS), 6 (2004), 153-180. Google Scholar  E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.  Google Scholar  J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, J. Partial Differential Equations, 19 (2006), 256-270. Google Scholar  L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.  Google Scholar  Q. A. Ngô and V. H. Nguyen, Sharp Reversed Hardy-Littlewood-Sobolev inequality on $\mathbfR^n$,, Israel J. Math., ().   Google Scholar  J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228. doi: 10.1007/s002080050258.  Google Scholar  X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95-109. doi: 10.1016/j.jfa.2007.03.005.  Google Scholar  Z. Zhang, Positive solutions of Lane-Emden systems with negative exponents: Existence, boundary behavior and uniqueness, Nonlinear Anal., 74 (2011), 5544-5553. doi: 10.1016/j.na.2011.05.038.  Google Scholar
  Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167  Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1681-1698. doi: 10.3934/cpaa.2021036  Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469  Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058  Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291  Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011  Philip Korman, Junping Shi. On lane-emden type systems. Conference Publications, 2005, 2005 (Special) : 510-517. doi: 10.3934/proc.2005.2005.510  Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1  Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051  Salim A. Messaoudi, Ala A. Talahmeh. Blow up of negative initial-energy solutions of a system of nonlinear wave equations with variable-exponent nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021107  Igor Freire, Ben Muatjetjeja. Symmetry analysis of a Lane-Emden-Klein-Gordon-Fock system with central symmetry. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 667-673. doi: 10.3934/dcdss.2018041  Mostafa Fazly, Nassif Ghoussoub. On the Hénon-Lane-Emden conjecture. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2513-2533. doi: 10.3934/dcds.2014.34.2513  Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793  Yutian Lei. On the integral systems with negative exponents. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039  Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925  Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235  Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082  Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015  Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807  Zongming Guo, Long Wei. A perturbed fourth order elliptic equation with negative exponent. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4187-4205. doi: 10.3934/dcdsb.2018132

2020 Impact Factor: 1.392