December  2016, 36(12): 6873-6898. doi: 10.3934/dcds.2016099

Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator

1. 

Department of Mathematics, Tsinghua University, Beijing, 100084

2. 

Department of Mathematics, Tsinghua University, Beijing 100084, China

Received  December 2015 Revised  April 2016 Published  October 2016

We consider the following problem: \begin{equation*} \left\{\begin{array}{ll} (-\Delta)^s u=K(y)u^{p-1} \hbox { in } \ \mathbb{R}^N, \\ u>0, \ y \in \mathbb{R}^N, \end{array}\right.                         (P) \end{equation*} where $s\in(0,\frac{1}{2})$ for $N=3$, $s\in(0,1)$ for $N\geq4$ and $p=\frac{2N}{N-2s}$ is the fractional critical Sobolev exponent. Under the condition that the function $K(y)$ has a local maximum point, we prove the existence of infinitely many non-radial solutions for the problem $(P)$.
Citation: Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099
References:
[1]

A. Bahri and J. Coron, The scalar-curvature problem on the standard three-dimensional sphere,, J. Funct. Anal., 95 (1991), 106.  doi: 10.1016/0022-1236(91)90026-2.  Google Scholar

[2]

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator,, J. Differential Equations, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[3]

C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39.  doi: 10.1017/S0308210511000175.  Google Scholar

[4]

X. Cabré and J. G. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[5]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[6]

D. M. Cao, E. Noussair and S. S. Yan, On the scalar curvature equation $-\Delta u=(1+\epsilon K)u^{(N+2)/(N-2)}$ in $\mathbbR^N$,, Calc. Var. Partial Differential Equations, 15 (2002), 403.  doi: 10.1007/s00526-002-0137-1.  Google Scholar

[7]

S. A. Chang and P. Yang, A perturbation result in prescribing scalar curvature on $S^n$,, Duke Math. J., 64 (1991), 27.  doi: 10.1215/S0012-7094-91-06402-1.  Google Scholar

[8]

C. C. Chen and C. S. Lin, Estimate of the conformal scalar curvature equation via the method of moving planes. II,, J. Differential Geom., 49 (1998), 115.   Google Scholar

[9]

C. C. Chen and C. S. Lin, Prescribing scalar curvature on $S^N$, I. A priori estimates,, J. Differential Geom., 57 (2001), 67.   Google Scholar

[10]

M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem,, Calc. Var. Partial Differential Equations, 16 (2003), 113.  doi: 10.1007/s005260100142.  Google Scholar

[11]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[12]

Y. X. Guo and B. Li, Infinitely many solutions for the prescribed curvature problem of polyharmonic operator,, Calc. Var. Partial Differential Equations, 46 (2013), 809.  doi: 10.1007/s00526-012-0504-5.  Google Scholar

[13]

T. L. Jin, Y. Y. Li and J. G. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, part I: blow up analysis and compactness of solutions., J. Eur. Math. Soc., 16 (2014), 1111.  doi: 10.4171/JEMS/456.  Google Scholar

[14]

Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems. II. Existence and compactness,, Comm. Pure Appl. Math., 49 (1996), 541.  doi: 10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A.  Google Scholar

[15]

Y. Li and W. M. Ni, On conformal scalar curvature equations in $\mathbbR^N$,, Duke Math. J., 57 (1988), 895.  doi: 10.1215/S0012-7094-88-05740-7.  Google Scholar

[16]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[17]

E. S. Noussair and S. S. Yan, The scalar curvature equation on $\mathbbR^N$,, Nonlinear Anal., 45 (2001), 483.  doi: 10.1016/S0362-546X(99)00428-9.  Google Scholar

[18]

R. Schoen and D. Zhang, Prescribed scalar curvature on the $n-$ sphere,, Calc. Var. Partial Differential Equations, 4 (1996), 1.  doi: 10.1007/BF01322307.  Google Scholar

[19]

J. G. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 42 (2011), 21.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[20]

J. G. Tan and J. G. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms,, Discrete Contin. Dyn. Syst., 31 (2011), 975.  doi: 10.3934/dcds.2011.31.975.  Google Scholar

[21]

J. C. Wei and S. S. Yan, Infinitely many solutions for the prescribed scalar curvature problem on $\mathbbS^N$,, J. Funct. Anal., 258 (2010), 3048.  doi: 10.1016/j.jfa.2009.12.008.  Google Scholar

[22]

S. S. Yan, Concentration of solutions for the scalar curvature equation on $\mathbbR^N$,, J. Differential Equations, 163 (2000), 239.  doi: 10.1006/jdeq.1999.3718.  Google Scholar

[23]

S. S. Yan, J. F. Yang and X. H. Yu, Equations involving fractional Laplacian operator: compactness and application,, J. Funct. Anal., 269 (2015), 47.  doi: 10.1016/j.jfa.2015.04.012.  Google Scholar

show all references

References:
[1]

A. Bahri and J. Coron, The scalar-curvature problem on the standard three-dimensional sphere,, J. Funct. Anal., 95 (1991), 106.  doi: 10.1016/0022-1236(91)90026-2.  Google Scholar

[2]

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator,, J. Differential Equations, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[3]

C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39.  doi: 10.1017/S0308210511000175.  Google Scholar

[4]

X. Cabré and J. G. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[5]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[6]

D. M. Cao, E. Noussair and S. S. Yan, On the scalar curvature equation $-\Delta u=(1+\epsilon K)u^{(N+2)/(N-2)}$ in $\mathbbR^N$,, Calc. Var. Partial Differential Equations, 15 (2002), 403.  doi: 10.1007/s00526-002-0137-1.  Google Scholar

[7]

S. A. Chang and P. Yang, A perturbation result in prescribing scalar curvature on $S^n$,, Duke Math. J., 64 (1991), 27.  doi: 10.1215/S0012-7094-91-06402-1.  Google Scholar

[8]

C. C. Chen and C. S. Lin, Estimate of the conformal scalar curvature equation via the method of moving planes. II,, J. Differential Geom., 49 (1998), 115.   Google Scholar

[9]

C. C. Chen and C. S. Lin, Prescribing scalar curvature on $S^N$, I. A priori estimates,, J. Differential Geom., 57 (2001), 67.   Google Scholar

[10]

M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem,, Calc. Var. Partial Differential Equations, 16 (2003), 113.  doi: 10.1007/s005260100142.  Google Scholar

[11]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[12]

Y. X. Guo and B. Li, Infinitely many solutions for the prescribed curvature problem of polyharmonic operator,, Calc. Var. Partial Differential Equations, 46 (2013), 809.  doi: 10.1007/s00526-012-0504-5.  Google Scholar

[13]

T. L. Jin, Y. Y. Li and J. G. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, part I: blow up analysis and compactness of solutions., J. Eur. Math. Soc., 16 (2014), 1111.  doi: 10.4171/JEMS/456.  Google Scholar

[14]

Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems. II. Existence and compactness,, Comm. Pure Appl. Math., 49 (1996), 541.  doi: 10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A.  Google Scholar

[15]

Y. Li and W. M. Ni, On conformal scalar curvature equations in $\mathbbR^N$,, Duke Math. J., 57 (1988), 895.  doi: 10.1215/S0012-7094-88-05740-7.  Google Scholar

[16]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[17]

E. S. Noussair and S. S. Yan, The scalar curvature equation on $\mathbbR^N$,, Nonlinear Anal., 45 (2001), 483.  doi: 10.1016/S0362-546X(99)00428-9.  Google Scholar

[18]

R. Schoen and D. Zhang, Prescribed scalar curvature on the $n-$ sphere,, Calc. Var. Partial Differential Equations, 4 (1996), 1.  doi: 10.1007/BF01322307.  Google Scholar

[19]

J. G. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 42 (2011), 21.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[20]

J. G. Tan and J. G. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms,, Discrete Contin. Dyn. Syst., 31 (2011), 975.  doi: 10.3934/dcds.2011.31.975.  Google Scholar

[21]

J. C. Wei and S. S. Yan, Infinitely many solutions for the prescribed scalar curvature problem on $\mathbbS^N$,, J. Funct. Anal., 258 (2010), 3048.  doi: 10.1016/j.jfa.2009.12.008.  Google Scholar

[22]

S. S. Yan, Concentration of solutions for the scalar curvature equation on $\mathbbR^N$,, J. Differential Equations, 163 (2000), 239.  doi: 10.1006/jdeq.1999.3718.  Google Scholar

[23]

S. S. Yan, J. F. Yang and X. H. Yu, Equations involving fractional Laplacian operator: compactness and application,, J. Funct. Anal., 269 (2015), 47.  doi: 10.1016/j.jfa.2015.04.012.  Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[4]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[7]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[11]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[14]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[17]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[18]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[19]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[20]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (91)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]