• Previous Article
    Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator
  • DCDS Home
  • This Issue
  • Next Article
    Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation
December  2016, 36(12): 6899-6919. doi: 10.3934/dcds.2016100

Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions

1. 

Department of Mathematics, Pusan National University, Busan, 609-735

Received  February 2016 Revised  July 2016 Published  October 2016

In this paper, we consider the viscoelastic equation with damping and source terms and acoustic boundary conditions. We prove a global existence of solutions and uniform decay rates of the energy without imposing any restrictive growth assumption on the damping term and weakening of the usual assumptions on the relaxation function. This paper is to improve the result of [4] by applying the method developed in [17].
Citation: Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100
References:
[1]

J. T. Beale, Spectral properties of an acoustic boundary condition,, Indiana Univ. Math. J., 25 (1976), 895. doi: 10.1512/iumj.1976.25.25071. Google Scholar

[2]

J. T. Beale, Acoustic scattering from locally reacting surfaces,, Indiana Univ. Math. J., 26 (1977), 199. doi: 10.1512/iumj.1977.26.26015. Google Scholar

[3]

J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions,, Bull. Amer. Math. Soc., 80 (1974), 1276. doi: 10.1090/S0002-9904-1974-13714-6. Google Scholar

[4]

Y. Boukhatem and B. Benabderrahmane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions,, Nonlinear Anal., 97 (2014), 191. doi: 10.1016/j.na.2013.11.019. Google Scholar

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction,, J. Differential. Equations, 236 (2007), 407. doi: 10.1016/j.jde.2007.02.004. Google Scholar

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, Nonlinear Anal., 68 (2008), 177. doi: 10.1016/j.na.2006.10.040. Google Scholar

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global solvability and asymptotic stability for the wave equation with nonlinear feedback and source term on the boundary,, Adv. Math. Sci. Appl., 16 (2006), 661. Google Scholar

[8]

A. T. Cousin, C. L. Frota and N. A. Larkin, Global solvability and asymptotic behaviour of a hyperbolic problem with acoustic boundary conditions,, Funkcial. Ekvac., 44 (2001), 471. Google Scholar

[9]

A. T. Cousin, C. L. Frota and N. A. Larkin, On a system of Klein-Gordon type equations with acoustic boundary conditions,, J. Math. Anal. Appl., 293 (2004), 293. doi: 10.1016/j.jmaa.2004.01.007. Google Scholar

[10]

C. L. Frota and J. A. Goldstein, Some Nonlinear wave equations with acoustic boundary conditins,, J. Differential equations, 164 (2000), 92. doi: 10.1006/jdeq.1999.3743. Google Scholar

[11]

C. L. Frota and N. A. Larkin, Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains,, Progr. Nonlinear Differential Equations Appl., 66 (2006), 297. doi: 10.1007/3-7643-7401-2_20. Google Scholar

[12]

P. Jameson Graber and B. Said-Houari, On the wave equation with semilinear porous acoustic boundary conditions,, J. Differential Equations, 252 (2012), 4898. doi: 10.1016/j.jde.2012.01.042. Google Scholar

[13]

P. Jameson Graber, Strong stability and uniform decay of solutions to a wave equation with semilinear porous acoustic boundary conditions,, Nonlinear Anal., 74 (2011), 3137. doi: 10.1016/j.na.2011.01.029. Google Scholar

[14]

P. Jameson Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping,, J. Evolution Equations, 12 (2012), 141. doi: 10.1007/s00028-011-0127-x. Google Scholar

[15]

P. Jameson Graber, Wave equation with porous nonlinear acoustic boundary conditions generates a well-posed dynamical system,, Nonlinear Anal., 73 (2010), 3058. doi: 10.1016/j.na.2010.06.075. Google Scholar

[16]

T. G. Ha, General decay estimates for the wave equation with acoustic boundary conditions in domains with nonlocally reacting boundary,, Appl. Math. Lett., 60 (2016), 43. doi: 10.1016/j.aml.2016.04.006. Google Scholar

[17]

T. G. Ha, On viscoelastic wave equation with nonlinear boundary damping and source term,, Commun. Pur. Appl. Anal., 9 (2010), 1543. doi: 10.3934/cpaa.2010.9.1543. Google Scholar

[18]

T. G. Ha and J. Y. Park, Existence of solutions for the Kirchhoff-type wave equation with memory term and acoustic boundary conditions,, Numer. Funct. Anal. Optim., 31 (2010), 921. doi: 10.1080/01630563.2010.498301. Google Scholar

[19]

T. G. Ha and J. Y. Park, On coupled Klein-Gordon-Schrödinger equations with acoustic boundary conditions,, Bound. Value Probl., 2010 (2010). Google Scholar

[20]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, John Wiley, (1994). Google Scholar

[21]

V. Komornik and E. Zuazua, A direct method for boundary stabilization of the wave equation,, J. Math. Pures Appl., 69 (1990), 33. Google Scholar

[22]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping,, Differ. Integral Equ., 6 (1993), 507. Google Scholar

[23]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions,, Appl. Math. Optim., 25 (1992), 189. doi: 10.1007/BF01182480. Google Scholar

[24]

J. Li and S. G. Chai, Energy decay for a nonlinear wave equation of variable coefficients with acoustic boundary conditions and a time-varying delay in the boundary feedback,, Nonlinear Anal., 112 (2015), 105. doi: 10.1016/j.na.2014.08.021. Google Scholar

[25]

W. Liu, Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions,, Appl. Math. Lett., 38 (2014), 155. doi: 10.1016/j.aml.2014.07.022. Google Scholar

[26]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems,, ESAIM: Control, 4 (1999), 419. doi: 10.1051/cocv:1999116. Google Scholar

[27]

J. Y. Park and T. G. Ha, Energy decay for nondissipative distributed systems with boundary damping and source term,, Nonlinear Anal., 70 (2009), 2416. doi: 10.1016/j.na.2008.03.026. Google Scholar

[28]

J. Y. Park and T. G. Ha, Existence and asymptotic stability for the semilinear wave equation with boundary damping and source term,, J. Math. Phys., 49 (2008). doi: 10.1063/1.2919886. Google Scholar

[29]

J. Y. Park and T. G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3040185. Google Scholar

[30]

J. Y. Park, T. G. Ha and Y. H. Kang, Energy decay rates for solutions of the wave equation with boundary damping and source term,, Z. Angew. Math. Phys., 61 (2010), 235. doi: 10.1007/s00033-009-0009-z. Google Scholar

[31]

E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms,, J. Differential Equations, 186 (2002), 259. doi: 10.1016/S0022-0396(02)00023-2. Google Scholar

[32]

J. Wu, Uniform energy decay of a variable coefficient wave equation with nonlinear acoustic boundary conditions,, J. Math. Anal. Appl., 399 (2013), 369. doi: 10.1016/j.jmaa.2012.09.056. Google Scholar

[33]

J. Wu, Well-posedness for a variable-coefficient wave equation with nonlinear damped acoustic boundary conditions,, Nonlinear Anal., 75 (2012), 6562. doi: 10.1016/j.na.2012.07.032. Google Scholar

[34]

E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback,, SIAM J. Control Optim., 28 (1990), 466. doi: 10.1137/0328025. Google Scholar

show all references

References:
[1]

J. T. Beale, Spectral properties of an acoustic boundary condition,, Indiana Univ. Math. J., 25 (1976), 895. doi: 10.1512/iumj.1976.25.25071. Google Scholar

[2]

J. T. Beale, Acoustic scattering from locally reacting surfaces,, Indiana Univ. Math. J., 26 (1977), 199. doi: 10.1512/iumj.1977.26.26015. Google Scholar

[3]

J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions,, Bull. Amer. Math. Soc., 80 (1974), 1276. doi: 10.1090/S0002-9904-1974-13714-6. Google Scholar

[4]

Y. Boukhatem and B. Benabderrahmane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions,, Nonlinear Anal., 97 (2014), 191. doi: 10.1016/j.na.2013.11.019. Google Scholar

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction,, J. Differential. Equations, 236 (2007), 407. doi: 10.1016/j.jde.2007.02.004. Google Scholar

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, Nonlinear Anal., 68 (2008), 177. doi: 10.1016/j.na.2006.10.040. Google Scholar

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global solvability and asymptotic stability for the wave equation with nonlinear feedback and source term on the boundary,, Adv. Math. Sci. Appl., 16 (2006), 661. Google Scholar

[8]

A. T. Cousin, C. L. Frota and N. A. Larkin, Global solvability and asymptotic behaviour of a hyperbolic problem with acoustic boundary conditions,, Funkcial. Ekvac., 44 (2001), 471. Google Scholar

[9]

A. T. Cousin, C. L. Frota and N. A. Larkin, On a system of Klein-Gordon type equations with acoustic boundary conditions,, J. Math. Anal. Appl., 293 (2004), 293. doi: 10.1016/j.jmaa.2004.01.007. Google Scholar

[10]

C. L. Frota and J. A. Goldstein, Some Nonlinear wave equations with acoustic boundary conditins,, J. Differential equations, 164 (2000), 92. doi: 10.1006/jdeq.1999.3743. Google Scholar

[11]

C. L. Frota and N. A. Larkin, Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains,, Progr. Nonlinear Differential Equations Appl., 66 (2006), 297. doi: 10.1007/3-7643-7401-2_20. Google Scholar

[12]

P. Jameson Graber and B. Said-Houari, On the wave equation with semilinear porous acoustic boundary conditions,, J. Differential Equations, 252 (2012), 4898. doi: 10.1016/j.jde.2012.01.042. Google Scholar

[13]

P. Jameson Graber, Strong stability and uniform decay of solutions to a wave equation with semilinear porous acoustic boundary conditions,, Nonlinear Anal., 74 (2011), 3137. doi: 10.1016/j.na.2011.01.029. Google Scholar

[14]

P. Jameson Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping,, J. Evolution Equations, 12 (2012), 141. doi: 10.1007/s00028-011-0127-x. Google Scholar

[15]

P. Jameson Graber, Wave equation with porous nonlinear acoustic boundary conditions generates a well-posed dynamical system,, Nonlinear Anal., 73 (2010), 3058. doi: 10.1016/j.na.2010.06.075. Google Scholar

[16]

T. G. Ha, General decay estimates for the wave equation with acoustic boundary conditions in domains with nonlocally reacting boundary,, Appl. Math. Lett., 60 (2016), 43. doi: 10.1016/j.aml.2016.04.006. Google Scholar

[17]

T. G. Ha, On viscoelastic wave equation with nonlinear boundary damping and source term,, Commun. Pur. Appl. Anal., 9 (2010), 1543. doi: 10.3934/cpaa.2010.9.1543. Google Scholar

[18]

T. G. Ha and J. Y. Park, Existence of solutions for the Kirchhoff-type wave equation with memory term and acoustic boundary conditions,, Numer. Funct. Anal. Optim., 31 (2010), 921. doi: 10.1080/01630563.2010.498301. Google Scholar

[19]

T. G. Ha and J. Y. Park, On coupled Klein-Gordon-Schrödinger equations with acoustic boundary conditions,, Bound. Value Probl., 2010 (2010). Google Scholar

[20]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, John Wiley, (1994). Google Scholar

[21]

V. Komornik and E. Zuazua, A direct method for boundary stabilization of the wave equation,, J. Math. Pures Appl., 69 (1990), 33. Google Scholar

[22]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping,, Differ. Integral Equ., 6 (1993), 507. Google Scholar

[23]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions,, Appl. Math. Optim., 25 (1992), 189. doi: 10.1007/BF01182480. Google Scholar

[24]

J. Li and S. G. Chai, Energy decay for a nonlinear wave equation of variable coefficients with acoustic boundary conditions and a time-varying delay in the boundary feedback,, Nonlinear Anal., 112 (2015), 105. doi: 10.1016/j.na.2014.08.021. Google Scholar

[25]

W. Liu, Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions,, Appl. Math. Lett., 38 (2014), 155. doi: 10.1016/j.aml.2014.07.022. Google Scholar

[26]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems,, ESAIM: Control, 4 (1999), 419. doi: 10.1051/cocv:1999116. Google Scholar

[27]

J. Y. Park and T. G. Ha, Energy decay for nondissipative distributed systems with boundary damping and source term,, Nonlinear Anal., 70 (2009), 2416. doi: 10.1016/j.na.2008.03.026. Google Scholar

[28]

J. Y. Park and T. G. Ha, Existence and asymptotic stability for the semilinear wave equation with boundary damping and source term,, J. Math. Phys., 49 (2008). doi: 10.1063/1.2919886. Google Scholar

[29]

J. Y. Park and T. G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3040185. Google Scholar

[30]

J. Y. Park, T. G. Ha and Y. H. Kang, Energy decay rates for solutions of the wave equation with boundary damping and source term,, Z. Angew. Math. Phys., 61 (2010), 235. doi: 10.1007/s00033-009-0009-z. Google Scholar

[31]

E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms,, J. Differential Equations, 186 (2002), 259. doi: 10.1016/S0022-0396(02)00023-2. Google Scholar

[32]

J. Wu, Uniform energy decay of a variable coefficient wave equation with nonlinear acoustic boundary conditions,, J. Math. Anal. Appl., 399 (2013), 369. doi: 10.1016/j.jmaa.2012.09.056. Google Scholar

[33]

J. Wu, Well-posedness for a variable-coefficient wave equation with nonlinear damped acoustic boundary conditions,, Nonlinear Anal., 75 (2012), 6562. doi: 10.1016/j.na.2012.07.032. Google Scholar

[34]

E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback,, SIAM J. Control Optim., 28 (1990), 466. doi: 10.1137/0328025. Google Scholar

[1]

Tae Gab Ha. On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions. Evolution Equations & Control Theory, 2018, 7 (2) : 281-291. doi: 10.3934/eect.2018014

[2]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[3]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[4]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[5]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[6]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[7]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[8]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[9]

Marcelo Moreira Cavalcanti. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 675-695. doi: 10.3934/dcds.2002.8.675

[10]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[11]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure & Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[12]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[13]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[14]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure & Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[15]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[16]

Haibo Cui, Lei Yao, Zheng-An Yao. Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 981-1000. doi: 10.3934/cpaa.2015.14.981

[17]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[18]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[19]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[20]

Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations & Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]