• Previous Article
    Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity
  • DCDS Home
  • This Issue
  • Next Article
    Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions
December  2016, 36(12): 6921-6941. doi: 10.3934/dcds.2016101

Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation

1. 

Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, China

2. 

Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China

Received  October 2015 Revised  August 2016 Published  October 2016

This paper is devoted to studying the global well-posedness for 3D inhomogeneous logarithmical hyper-dissipative Navier-Stokes equations with dissipative terms $D^2u$. Here we consider the supercritical case, namely, the symbol of the Fourier multiplier $D$ takes the form $h(\xi)=|\xi|^{\frac{5}{4}}/g(\xi)$, where $g(\xi)=\log^{\frac{1}{4}}(2+|\xi|^2)$. This generalizes the work of Tao [17] to the inhomogeneous system, and can also be viewed as a generalization of Fang and Zi [12], in which they considered the critical case $h(\xi)=|\xi|^{\frac{5}{4}}$.
Citation: Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

D. Barbato, F. Morandin and M. Romito, Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system,, Analysis and PDE, 7 (2014), 2009.  doi: 10.2140/apde.2014.7.2009.  Google Scholar

[3]

J. M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires,, Annales Scinentifiques de l'école Normale Supérieure, 14 (1981), 209.   Google Scholar

[4]

J. Y. Chemin, Localization in Fourier space and Navier-Stokes system,, Phase Space Analysis of partial Differential Equations, 1 (2004), 53.   Google Scholar

[5]

J. Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes,, J. Differential Equations, 121 (1995), 314.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[6]

R. Danchin, Density-dependent incompressible Viscous fluids in critical spaces,, Proc. Roy. Soc. Edinburgh Sect.A, 133 (2003), 1311.  doi: 10.1017/S030821050000295X.  Google Scholar

[7]

R. Danchin, The inviscid limit for density-dependent incompressible fluids,, Ann. Fac. Sci. Toulouse Math. Ser., 15 (2006), 637.  doi: 10.5802/afst.1133.  Google Scholar

[8]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Advances in Differential Equations, 9 (2004), 353.   Google Scholar

[9]

R. Danchin, Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density,, Communications in Partial Differential Equations, 32 (2007), 1373.  doi: 10.1080/03605300600910399.  Google Scholar

[10]

R. J. DiPerna and P. L. Lions, Ordinary differential equations transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.  doi: 10.1007/BF01393835.  Google Scholar

[11]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I,, Arch. Roational Mech. Anal. 16 (1964), 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[12]

D. Fang and Rui. Z. Zi, On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations,, Discrete and continuous Dynamical systems, 33 (2013), 3517.  doi: 10.3934/dcds.2013.33.3517.  Google Scholar

[13]

S. Itoh and A. Tani, Solvability of nonstationary problems for nonhomogeneous incompressible uids and the convergence with vanishing viscosity,, Tokyo Joural of Mathematics, 22 (1999), 17.  doi: 10.3836/tjm/1270041610.  Google Scholar

[14]

N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equaiton with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.  doi: 10.1007/s00039-002-8250-z.  Google Scholar

[15]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, Oxford Lecture Series in Mathematics and its Applications, (1996).   Google Scholar

[16]

O. Ladyzhenskaja and V. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids,, Journal of Soviet Mathematics, 9 (1978), 697.   Google Scholar

[17]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

D. Barbato, F. Morandin and M. Romito, Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system,, Analysis and PDE, 7 (2014), 2009.  doi: 10.2140/apde.2014.7.2009.  Google Scholar

[3]

J. M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires,, Annales Scinentifiques de l'école Normale Supérieure, 14 (1981), 209.   Google Scholar

[4]

J. Y. Chemin, Localization in Fourier space and Navier-Stokes system,, Phase Space Analysis of partial Differential Equations, 1 (2004), 53.   Google Scholar

[5]

J. Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes,, J. Differential Equations, 121 (1995), 314.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[6]

R. Danchin, Density-dependent incompressible Viscous fluids in critical spaces,, Proc. Roy. Soc. Edinburgh Sect.A, 133 (2003), 1311.  doi: 10.1017/S030821050000295X.  Google Scholar

[7]

R. Danchin, The inviscid limit for density-dependent incompressible fluids,, Ann. Fac. Sci. Toulouse Math. Ser., 15 (2006), 637.  doi: 10.5802/afst.1133.  Google Scholar

[8]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Advances in Differential Equations, 9 (2004), 353.   Google Scholar

[9]

R. Danchin, Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density,, Communications in Partial Differential Equations, 32 (2007), 1373.  doi: 10.1080/03605300600910399.  Google Scholar

[10]

R. J. DiPerna and P. L. Lions, Ordinary differential equations transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.  doi: 10.1007/BF01393835.  Google Scholar

[11]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I,, Arch. Roational Mech. Anal. 16 (1964), 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[12]

D. Fang and Rui. Z. Zi, On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations,, Discrete and continuous Dynamical systems, 33 (2013), 3517.  doi: 10.3934/dcds.2013.33.3517.  Google Scholar

[13]

S. Itoh and A. Tani, Solvability of nonstationary problems for nonhomogeneous incompressible uids and the convergence with vanishing viscosity,, Tokyo Joural of Mathematics, 22 (1999), 17.  doi: 10.3836/tjm/1270041610.  Google Scholar

[14]

N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equaiton with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.  doi: 10.1007/s00039-002-8250-z.  Google Scholar

[15]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, Oxford Lecture Series in Mathematics and its Applications, (1996).   Google Scholar

[16]

O. Ladyzhenskaja and V. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids,, Journal of Soviet Mathematics, 9 (1978), 697.   Google Scholar

[17]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar

[1]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[2]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[8]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[9]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[10]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[15]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[18]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]