• Previous Article
    Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function
  • DCDS Home
  • This Issue
  • Next Article
    Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation
December  2016, 36(12): 6943-6974. doi: 10.3934/dcds.2016102

Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity

1. 

Organization for Promotion of Tenure Track, University of Miyazaki, 1-1, Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan

2. 

Division of Mathematics and Physics, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano City, 380-8553, Japan

Received  February 2016 Revised  March 2016 Published  October 2016

We consider the Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity $(i\partial _t + \Delta ) u= \pm \partial (\overline{u}^m)$ on $\mathbb{R} ^d$, $d \ge 1$, with random initial data, where $\partial$ is a first order derivative with respect to the spatial variable, for example a linear combination of $\frac{\partial}{\partial x_1} , \, \dots , \, \frac{\partial}{\partial x_d}$ or $|\nabla |= \mathcal{F}^{-1}[|\xi | \mathcal{F}]$. We prove that almost sure local in time well-posedness, small data global in time well-posedness and scattering hold in $H^s(\mathbb{R} ^d)$ with $s> \max \left( \frac{d-1}{d} s_c , \frac{s_c}{2}, s_c - \frac{d}{2(d+1)} \right)$ for $d+m \ge 5$, where $s$ is below the scaling critical regularity $s_c := \frac{d}{2}-\frac{1}{m-1}$.
Citation: Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102
References:
[1]

Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursion in Harmonic Analysis, Applied and Numerical Harmonic Analysis, 4 (2015), 3-25. doi: 10.1007/978-3-319-20188-7_1.  Google Scholar

[2]

Á. Bényi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbbR^d$, $d \ge 3$, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1-50. doi: 10.1090/btran/6.  Google Scholar

[3]

H. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659. doi: 10.1090/S0002-9947-01-02754-4.  Google Scholar

[4]

J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994), 1-26. doi: 10.1007/BF02099299.  Google Scholar

[5]

J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys., 176 (1996), 421-445. doi: 10.1007/BF02099556.  Google Scholar

[6]

J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Internat. Math. Res. Notices, (1998), 253-283. doi: 10.1155/S1073792898000191.  Google Scholar

[7]

J. Bourgain and A. Bulut, Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: The 2D case, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1267-1288. doi: 10.1016/j.anihpc.2013.09.002.  Google Scholar

[8]

J. Bourgain and A. Bulut, Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: The 3d case, J. Eur. Math. Soc. (JEMS), 16 (2014), 1289-1325. doi: 10.4171/JEMS/461.  Google Scholar

[9]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: local theory, Invent. Math., 173 (2008), 449-475. doi: 10.1007/s00222-008-0124-z.  Google Scholar

[10]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations II: a global existence result, Invent. Math., 173 (2008), 477-496. doi: 10.1007/s00222-008-0123-0.  Google Scholar

[11]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS), 16 (2014), 1-30. doi: 10.4171/JEMS/426.  Google Scholar

[12]

J. Colliander, J. Delort, C. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325. doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar

[13]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness result for Schrödigner equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669. doi: 10.1137/S0036141001384387.  Google Scholar

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness result for Schrödigner equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86. doi: 10.1137/S0036141001394541.  Google Scholar

[15]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T.Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^{3}$, Ann. of Math., 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767.  Google Scholar

[16]

J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbbT)$, Duke Math. J., 161 (2012), 367-414. doi: 10.1215/00127094-1507400.  Google Scholar

[17]

C. Deng and S. Cui, Random-data Cauchy problem for the Navier-Stokes equations on $\mathbbT ^3$, J. Differential Equations, 251 (2011), 902-917. doi: 10.1016/j.jde.2011.05.002.  Google Scholar

[18]

A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations,, , ().   Google Scholar

[19]

M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré, 26 (2009), 917-941. doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[20]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Phys. D, 55 (1992), 14-36. doi: 10.1016/0167-2789(92)90185-P.  Google Scholar

[21]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833. doi: 10.1016/0362-546X(93)90071-Y.  Google Scholar

[22]

S. Herr, On the Cauchy Problem for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition, Int. Math. Res. Not., 2006. doi: 10.1155/IMRN/2006/96763.  Google Scholar

[23]

H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data, Comm. Pure Appl. Anal., 13 (2014), 1563-1591. doi: 10.3934/cpaa.2014.13.1563.  Google Scholar

[24]

H. Hirayama, Well-posedness and scattering for nonlinear Schrödinger equations with a derivative nonlinearity at the scaling critical regularity, Funkcialaj Ekvacioj, 58 (2015), 431-450. doi: 10.1619/fesi.58.431.  Google Scholar

[25]

H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity,, , ().   Google Scholar

[26]

S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1 (\mathbbT^3)$, Duke Math. J., 159 (2011), 329-349. doi: 10.1215/00127094-1415889.  Google Scholar

[27]

M. Ikeda, N. Kishimoto and M. Okamoto, Well-posedness for a quadratic derivative nonlinear schrödinger system at the critical regularity, Journal of Functional Analysis, 271 (2016), 747-798. doi: 10.1016/j.jfa.2016.05.009.  Google Scholar

[28]

J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $\mathbbR^3$, Comm. Partial Differential Equations, 39 (2014), 2262-2283. doi: 10.1080/03605302.2014.933239.  Google Scholar

[29]

R. Mosincat and T. Oh, A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle, C. R. Math. Acad. Sci. Paris, 353 (2015), 837-841, arXiv:1502.02261v3. doi: 10.1016/j.crma.2015.06.015.  Google Scholar

[30]

A. S. Nahmod and G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space, J. Eur. Math. Soc. (JEMS), 17 (2015), 1687-1759. doi: 10.4171/JEMS/543.  Google Scholar

[31]

H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Diff. Eqns., 4 (1999), 561-580.  Google Scholar

[32]

H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Diff. Eqns., 42 (2001), 1-23.  Google Scholar

[33]

L. Thomann, Random data Cauchy problem for supercritical Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2385-2402. doi: 10.1016/j.anihpc.2009.06.001.  Google Scholar

[34]

Y. Wu, Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space, Anal. PDE, 6 (2013), 1989-2002. doi: 10.2140/apde.2013.6.1989.  Google Scholar

[35]

T. Zhang and D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012), 311-324. doi: 10.1007/s00021-011-0069-7.  Google Scholar

[36]

S. Zhong, The Cauchy problem of null form wave equation on $\mathbbT^d$ with random initial data, Funkcial. Ekvac., 55 (2012), 367-403. doi: 10.1619/fesi.55.367.  Google Scholar

show all references

References:
[1]

Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursion in Harmonic Analysis, Applied and Numerical Harmonic Analysis, 4 (2015), 3-25. doi: 10.1007/978-3-319-20188-7_1.  Google Scholar

[2]

Á. Bényi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbbR^d$, $d \ge 3$, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1-50. doi: 10.1090/btran/6.  Google Scholar

[3]

H. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659. doi: 10.1090/S0002-9947-01-02754-4.  Google Scholar

[4]

J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994), 1-26. doi: 10.1007/BF02099299.  Google Scholar

[5]

J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys., 176 (1996), 421-445. doi: 10.1007/BF02099556.  Google Scholar

[6]

J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Internat. Math. Res. Notices, (1998), 253-283. doi: 10.1155/S1073792898000191.  Google Scholar

[7]

J. Bourgain and A. Bulut, Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: The 2D case, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1267-1288. doi: 10.1016/j.anihpc.2013.09.002.  Google Scholar

[8]

J. Bourgain and A. Bulut, Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: The 3d case, J. Eur. Math. Soc. (JEMS), 16 (2014), 1289-1325. doi: 10.4171/JEMS/461.  Google Scholar

[9]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: local theory, Invent. Math., 173 (2008), 449-475. doi: 10.1007/s00222-008-0124-z.  Google Scholar

[10]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations II: a global existence result, Invent. Math., 173 (2008), 477-496. doi: 10.1007/s00222-008-0123-0.  Google Scholar

[11]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS), 16 (2014), 1-30. doi: 10.4171/JEMS/426.  Google Scholar

[12]

J. Colliander, J. Delort, C. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325. doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar

[13]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness result for Schrödigner equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669. doi: 10.1137/S0036141001384387.  Google Scholar

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness result for Schrödigner equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86. doi: 10.1137/S0036141001394541.  Google Scholar

[15]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T.Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^{3}$, Ann. of Math., 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767.  Google Scholar

[16]

J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbbT)$, Duke Math. J., 161 (2012), 367-414. doi: 10.1215/00127094-1507400.  Google Scholar

[17]

C. Deng and S. Cui, Random-data Cauchy problem for the Navier-Stokes equations on $\mathbbT ^3$, J. Differential Equations, 251 (2011), 902-917. doi: 10.1016/j.jde.2011.05.002.  Google Scholar

[18]

A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations,, , ().   Google Scholar

[19]

M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré, 26 (2009), 917-941. doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[20]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Phys. D, 55 (1992), 14-36. doi: 10.1016/0167-2789(92)90185-P.  Google Scholar

[21]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833. doi: 10.1016/0362-546X(93)90071-Y.  Google Scholar

[22]

S. Herr, On the Cauchy Problem for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition, Int. Math. Res. Not., 2006. doi: 10.1155/IMRN/2006/96763.  Google Scholar

[23]

H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data, Comm. Pure Appl. Anal., 13 (2014), 1563-1591. doi: 10.3934/cpaa.2014.13.1563.  Google Scholar

[24]

H. Hirayama, Well-posedness and scattering for nonlinear Schrödinger equations with a derivative nonlinearity at the scaling critical regularity, Funkcialaj Ekvacioj, 58 (2015), 431-450. doi: 10.1619/fesi.58.431.  Google Scholar

[25]

H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity,, , ().   Google Scholar

[26]

S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1 (\mathbbT^3)$, Duke Math. J., 159 (2011), 329-349. doi: 10.1215/00127094-1415889.  Google Scholar

[27]

M. Ikeda, N. Kishimoto and M. Okamoto, Well-posedness for a quadratic derivative nonlinear schrödinger system at the critical regularity, Journal of Functional Analysis, 271 (2016), 747-798. doi: 10.1016/j.jfa.2016.05.009.  Google Scholar

[28]

J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $\mathbbR^3$, Comm. Partial Differential Equations, 39 (2014), 2262-2283. doi: 10.1080/03605302.2014.933239.  Google Scholar

[29]

R. Mosincat and T. Oh, A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle, C. R. Math. Acad. Sci. Paris, 353 (2015), 837-841, arXiv:1502.02261v3. doi: 10.1016/j.crma.2015.06.015.  Google Scholar

[30]

A. S. Nahmod and G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space, J. Eur. Math. Soc. (JEMS), 17 (2015), 1687-1759. doi: 10.4171/JEMS/543.  Google Scholar

[31]

H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Diff. Eqns., 4 (1999), 561-580.  Google Scholar

[32]

H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Diff. Eqns., 42 (2001), 1-23.  Google Scholar

[33]

L. Thomann, Random data Cauchy problem for supercritical Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2385-2402. doi: 10.1016/j.anihpc.2009.06.001.  Google Scholar

[34]

Y. Wu, Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space, Anal. PDE, 6 (2013), 1989-2002. doi: 10.2140/apde.2013.6.1989.  Google Scholar

[35]

T. Zhang and D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012), 311-324. doi: 10.1007/s00021-011-0069-7.  Google Scholar

[36]

S. Zhong, The Cauchy problem of null form wave equation on $\mathbbT^d$ with random initial data, Funkcial. Ekvac., 55 (2012), 367-403. doi: 10.1619/fesi.55.367.  Google Scholar

[1]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[2]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[3]

Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131

[4]

Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233

[5]

Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021028

[6]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[7]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[8]

Shuai Zhang, Shaopeng Xu. The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3367-3385. doi: 10.3934/cpaa.2020149

[9]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[10]

Editorial Office. Retraction: The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3785-3785. doi: 10.3934/cpaa.2020167

[11]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[12]

JinMyong An, JinMyong Kim, KyuSong Chae. Continuous dependence of the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation in $H^{s} (\mathbb R^{n})$. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021221

[13]

Wolfgang Wagner. A random cloud model for the Schrödinger equation. Kinetic & Related Models, 2014, 7 (2) : 361-379. doi: 10.3934/krm.2014.7.361

[14]

Shubin Wang, Guowang Chen. Cauchy problem for the nonlinear Schrödinger-IMBq equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 203-214. doi: 10.3934/dcdsb.2006.6.203

[15]

Carlos Kenig, Tobias Lamm, Daniel Pollack, Gigliola Staffilani, Tatiana Toro. The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 389-439. doi: 10.3934/dcds.2010.27.389

[16]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[17]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[18]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[19]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[20]

Shuli Chen, Zewen Wang, Guolin Chen. Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem. Inverse Problems & Imaging, 2021, 15 (4) : 619-639. doi: 10.3934/ipi.2021008

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (126)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]