• Previous Article
    Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function
  • DCDS Home
  • This Issue
  • Next Article
    Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation
December  2016, 36(12): 6943-6974. doi: 10.3934/dcds.2016102

Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity

1. 

Organization for Promotion of Tenure Track, University of Miyazaki, 1-1, Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan

2. 

Division of Mathematics and Physics, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano City, 380-8553, Japan

Received  February 2016 Revised  March 2016 Published  October 2016

We consider the Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity $(i\partial _t + \Delta ) u= \pm \partial (\overline{u}^m)$ on $\mathbb{R} ^d$, $d \ge 1$, with random initial data, where $\partial$ is a first order derivative with respect to the spatial variable, for example a linear combination of $\frac{\partial}{\partial x_1} , \, \dots , \, \frac{\partial}{\partial x_d}$ or $|\nabla |= \mathcal{F}^{-1}[|\xi | \mathcal{F}]$. We prove that almost sure local in time well-posedness, small data global in time well-posedness and scattering hold in $H^s(\mathbb{R} ^d)$ with $s> \max \left( \frac{d-1}{d} s_c , \frac{s_c}{2}, s_c - \frac{d}{2(d+1)} \right)$ for $d+m \ge 5$, where $s$ is below the scaling critical regularity $s_c := \frac{d}{2}-\frac{1}{m-1}$.
Citation: Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102
References:
[1]

Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS,, Excursion in Harmonic Analysis, 4 (2015), 3.  doi: 10.1007/978-3-319-20188-7_1.  Google Scholar

[2]

Á. Bényi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbbR^d$, $d \ge 3$,, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1.  doi: 10.1090/btran/6.  Google Scholar

[3]

H. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations,, Trans. Amer. Math. Soc., 353 (2001), 3649.  doi: 10.1090/S0002-9947-01-02754-4.  Google Scholar

[4]

J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures,, Comm. Math. Phys., 166 (1994), 1.  doi: 10.1007/BF02099299.  Google Scholar

[5]

J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation,, Comm. Math. Phys., 176 (1996), 421.  doi: 10.1007/BF02099556.  Google Scholar

[6]

J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity,, Internat. Math. Res. Notices, (1998), 253.  doi: 10.1155/S1073792898000191.  Google Scholar

[7]

J. Bourgain and A. Bulut, Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: The 2D case,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1267.  doi: 10.1016/j.anihpc.2013.09.002.  Google Scholar

[8]

J. Bourgain and A. Bulut, Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: The 3d case,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1289.  doi: 10.4171/JEMS/461.  Google Scholar

[9]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: local theory,, Invent. Math., 173 (2008), 449.  doi: 10.1007/s00222-008-0124-z.  Google Scholar

[10]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations II: a global existence result,, Invent. Math., 173 (2008), 477.  doi: 10.1007/s00222-008-0123-0.  Google Scholar

[11]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1.  doi: 10.4171/JEMS/426.  Google Scholar

[12]

J. Colliander, J. Delort, C. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS,, Trans. Amer. Math. Soc., 353 (2001), 3307.  doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar

[13]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness result for Schrödigner equations with derivative,, SIAM J. Math. Anal., 33 (2001), 649.  doi: 10.1137/S0036141001384387.  Google Scholar

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness result for Schrödigner equations with derivative,, SIAM J. Math. Anal., 34 (2002), 64.  doi: 10.1137/S0036141001394541.  Google Scholar

[15]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T.Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^{3}$,, Ann. of Math., 167 (2008), 767.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[16]

J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbbT)$,, Duke Math. J., 161 (2012), 367.  doi: 10.1215/00127094-1507400.  Google Scholar

[17]

C. Deng and S. Cui, Random-data Cauchy problem for the Navier-Stokes equations on $\mathbbT ^3$,, J. Differential Equations, 251 (2011), 902.  doi: 10.1016/j.jde.2011.05.002.  Google Scholar

[18]

A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations,, , ().   Google Scholar

[19]

M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space,, Ann. Inst. H. Poincaré, 26 (2009), 917.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[20]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation,, Phys. D, 55 (1992), 14.  doi: 10.1016/0167-2789(92)90185-P.  Google Scholar

[21]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space,, Nonlinear Anal., 20 (1993), 823.  doi: 10.1016/0362-546X(93)90071-Y.  Google Scholar

[22]

S. Herr, On the Cauchy Problem for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition,, Int. Math. Res. Not., (2006).  doi: 10.1155/IMRN/2006/96763.  Google Scholar

[23]

H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data,, Comm. Pure Appl. Anal., 13 (2014), 1563.  doi: 10.3934/cpaa.2014.13.1563.  Google Scholar

[24]

H. Hirayama, Well-posedness and scattering for nonlinear Schrödinger equations with a derivative nonlinearity at the scaling critical regularity,, Funkcialaj Ekvacioj, 58 (2015), 431.  doi: 10.1619/fesi.58.431.  Google Scholar

[25]

H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity,, , ().   Google Scholar

[26]

S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1 (\mathbbT^3)$,, Duke Math. J., 159 (2011), 329.  doi: 10.1215/00127094-1415889.  Google Scholar

[27]

M. Ikeda, N. Kishimoto and M. Okamoto, Well-posedness for a quadratic derivative nonlinear schrödinger system at the critical regularity,, Journal of Functional Analysis, 271 (2016), 747.  doi: 10.1016/j.jfa.2016.05.009.  Google Scholar

[28]

J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $\mathbbR^3$,, Comm. Partial Differential Equations, 39 (2014), 2262.  doi: 10.1080/03605302.2014.933239.  Google Scholar

[29]

R. Mosincat and T. Oh, A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle,, C. R. Math. Acad. Sci. Paris, 353 (2015), 837.  doi: 10.1016/j.crma.2015.06.015.  Google Scholar

[30]

A. S. Nahmod and G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space,, J. Eur. Math. Soc. (JEMS), 17 (2015), 1687.  doi: 10.4171/JEMS/543.  Google Scholar

[31]

H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity,, Adv. Diff. Eqns., 4 (1999), 561.   Google Scholar

[32]

H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces,, Electron. J. Diff. Eqns., 42 (2001), 1.   Google Scholar

[33]

L. Thomann, Random data Cauchy problem for supercritical Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2385.  doi: 10.1016/j.anihpc.2009.06.001.  Google Scholar

[34]

Y. Wu, Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space,, Anal. PDE, 6 (2013), 1989.  doi: 10.2140/apde.2013.6.1989.  Google Scholar

[35]

T. Zhang and D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations,, J. Math. Fluid Mech., 14 (2012), 311.  doi: 10.1007/s00021-011-0069-7.  Google Scholar

[36]

S. Zhong, The Cauchy problem of null form wave equation on $\mathbbT^d$ with random initial data,, Funkcial. Ekvac., 55 (2012), 367.  doi: 10.1619/fesi.55.367.  Google Scholar

show all references

References:
[1]

Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS,, Excursion in Harmonic Analysis, 4 (2015), 3.  doi: 10.1007/978-3-319-20188-7_1.  Google Scholar

[2]

Á. Bényi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbbR^d$, $d \ge 3$,, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1.  doi: 10.1090/btran/6.  Google Scholar

[3]

H. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations,, Trans. Amer. Math. Soc., 353 (2001), 3649.  doi: 10.1090/S0002-9947-01-02754-4.  Google Scholar

[4]

J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures,, Comm. Math. Phys., 166 (1994), 1.  doi: 10.1007/BF02099299.  Google Scholar

[5]

J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation,, Comm. Math. Phys., 176 (1996), 421.  doi: 10.1007/BF02099556.  Google Scholar

[6]

J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity,, Internat. Math. Res. Notices, (1998), 253.  doi: 10.1155/S1073792898000191.  Google Scholar

[7]

J. Bourgain and A. Bulut, Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: The 2D case,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1267.  doi: 10.1016/j.anihpc.2013.09.002.  Google Scholar

[8]

J. Bourgain and A. Bulut, Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: The 3d case,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1289.  doi: 10.4171/JEMS/461.  Google Scholar

[9]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: local theory,, Invent. Math., 173 (2008), 449.  doi: 10.1007/s00222-008-0124-z.  Google Scholar

[10]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations II: a global existence result,, Invent. Math., 173 (2008), 477.  doi: 10.1007/s00222-008-0123-0.  Google Scholar

[11]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1.  doi: 10.4171/JEMS/426.  Google Scholar

[12]

J. Colliander, J. Delort, C. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS,, Trans. Amer. Math. Soc., 353 (2001), 3307.  doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar

[13]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness result for Schrödigner equations with derivative,, SIAM J. Math. Anal., 33 (2001), 649.  doi: 10.1137/S0036141001384387.  Google Scholar

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness result for Schrödigner equations with derivative,, SIAM J. Math. Anal., 34 (2002), 64.  doi: 10.1137/S0036141001394541.  Google Scholar

[15]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T.Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^{3}$,, Ann. of Math., 167 (2008), 767.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[16]

J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbbT)$,, Duke Math. J., 161 (2012), 367.  doi: 10.1215/00127094-1507400.  Google Scholar

[17]

C. Deng and S. Cui, Random-data Cauchy problem for the Navier-Stokes equations on $\mathbbT ^3$,, J. Differential Equations, 251 (2011), 902.  doi: 10.1016/j.jde.2011.05.002.  Google Scholar

[18]

A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations,, , ().   Google Scholar

[19]

M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space,, Ann. Inst. H. Poincaré, 26 (2009), 917.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[20]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation,, Phys. D, 55 (1992), 14.  doi: 10.1016/0167-2789(92)90185-P.  Google Scholar

[21]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space,, Nonlinear Anal., 20 (1993), 823.  doi: 10.1016/0362-546X(93)90071-Y.  Google Scholar

[22]

S. Herr, On the Cauchy Problem for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition,, Int. Math. Res. Not., (2006).  doi: 10.1155/IMRN/2006/96763.  Google Scholar

[23]

H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data,, Comm. Pure Appl. Anal., 13 (2014), 1563.  doi: 10.3934/cpaa.2014.13.1563.  Google Scholar

[24]

H. Hirayama, Well-posedness and scattering for nonlinear Schrödinger equations with a derivative nonlinearity at the scaling critical regularity,, Funkcialaj Ekvacioj, 58 (2015), 431.  doi: 10.1619/fesi.58.431.  Google Scholar

[25]

H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity,, , ().   Google Scholar

[26]

S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1 (\mathbbT^3)$,, Duke Math. J., 159 (2011), 329.  doi: 10.1215/00127094-1415889.  Google Scholar

[27]

M. Ikeda, N. Kishimoto and M. Okamoto, Well-posedness for a quadratic derivative nonlinear schrödinger system at the critical regularity,, Journal of Functional Analysis, 271 (2016), 747.  doi: 10.1016/j.jfa.2016.05.009.  Google Scholar

[28]

J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $\mathbbR^3$,, Comm. Partial Differential Equations, 39 (2014), 2262.  doi: 10.1080/03605302.2014.933239.  Google Scholar

[29]

R. Mosincat and T. Oh, A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle,, C. R. Math. Acad. Sci. Paris, 353 (2015), 837.  doi: 10.1016/j.crma.2015.06.015.  Google Scholar

[30]

A. S. Nahmod and G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space,, J. Eur. Math. Soc. (JEMS), 17 (2015), 1687.  doi: 10.4171/JEMS/543.  Google Scholar

[31]

H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity,, Adv. Diff. Eqns., 4 (1999), 561.   Google Scholar

[32]

H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces,, Electron. J. Diff. Eqns., 42 (2001), 1.   Google Scholar

[33]

L. Thomann, Random data Cauchy problem for supercritical Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2385.  doi: 10.1016/j.anihpc.2009.06.001.  Google Scholar

[34]

Y. Wu, Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space,, Anal. PDE, 6 (2013), 1989.  doi: 10.2140/apde.2013.6.1989.  Google Scholar

[35]

T. Zhang and D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations,, J. Math. Fluid Mech., 14 (2012), 311.  doi: 10.1007/s00021-011-0069-7.  Google Scholar

[36]

S. Zhong, The Cauchy problem of null form wave equation on $\mathbbT^d$ with random initial data,, Funkcial. Ekvac., 55 (2012), 367.  doi: 10.1619/fesi.55.367.  Google Scholar

[1]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[2]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[3]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[9]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[14]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[16]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[17]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[18]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[19]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[20]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]