\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the symmetry of spatially periodic two-dimensional water waves

Abstract Related Papers Cited by
  • We show that a spatially periodic solution to the irrotational two-dimensional gravity water wave problem, with the property that the horizontal velocity component at the flat bed is symmetric, while the acceleration at the flat bed is anti-symmetric with respect to a common axis of symmetry, necessarily constitutes a traveling wave. The proof makes use complex variables and structural properties of the governing equations for nonlinear water waves.
    Mathematics Subject Classification: Primary: 35Q35; Secondary: 35B50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom Pressure measurements, J. Fluid Mech., 726 (2013), 547-558.doi: 10.1017/jfm.2013.253.

    [2]

    D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-475.doi: 10.1017/jfm.2012.490.

    [3]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [4]

    A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 2011.doi: 10.1137/1.9781611971873.

    [5]

    A. Constantin, Estimating wave heights from pressure data at the bed, J. Fluid Mech., 743 (2014), 10pp.doi: 10.1017/jfm.2014.81.

    [6]

    A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.doi: 10.1215/S0012-7094-07-14034-1.

    [7]

    A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.doi: 10.1017/S0022112003006773.

    [8]

    M. Ehrnström, H. Holden and X. Raynaud, Symmetric Waves Are Traveling Waves, International Mathematics Research Notices, 2009 (2009), 4578-4596.doi: 10.1093/imrn/rnp100.

    [9]

    R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied Mathematics, Cambridge, 1997.doi: 10.1017/CBO9780511624056.

    [10]

    F. Kogelbauer, Recovery of the wave profile for irrotational periodic water waves from pressure measurements, Nonl. Anal.: Real World Appl., 22 (2015), 219-224.doi: 10.1016/j.nonrwa.2014.09.003.

    [11]

    F. Kogelbauer, Symmetric irrotational water waves are traveling waves, J. Diff. Eq., 259 (2015), 5271-5275.doi: 10.1016/j.jde.2015.06.025.

    [12]

    S. Lang, Complex Analysis, Graduate Texts in Mathematics, Springer, 2003.

    [13]

    B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow, Discrete Contin. Dyn. Syst., A 34 (2014), 3125-3133.doi: 10.3934/dcds.2014.34.3125.

    [14]

    H. Okamoto and M. Shoji, The Mathematical Theory of Permanent Progressive Water-waves, World Scientific, 2001.doi: 10.1142/4547.

    [15]

    G. Tulzer, On the symmetry of steady periodic water waves with stagnation points, Comm. Pure Appl. Anal., 11 (2012), 1577-1586.doi: 10.3934/cpaa.2012.11.1577.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(170) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return