December  2016, 36(12): 7063-7079. doi: 10.3934/dcds.2016108

Dynamics for a non-autonomous degenerate parabolic equation in $\mathfrak{D}_{0}^{1}(\Omega, \sigma)$

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China, China

2. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000

Received  May 2015 Revised  July 2016 Published  October 2016

In this paper, we study the dynamics of a non-autonomous semilinear degenerate parabolic equation $u_{t}-div(\sigma(x)\nabla u)+ f(u)=g(x, t)$ defined on a bounded domain $\Omega\subset \mathbb{R}^N$ with smooth boundary. We first establish a Nash-Moser-Alikakos type a priori estimate for the difference of solutions near the initial time; Then we prove that the solution process $U(t,\tau)$ is continuous from $L^{2}(\Omega)$ to $\mathscr{D}_{0}^{1}(\Omega, \sigma)$ w.r.t. initial data; And finally show that the known $(L^{2}(\Omega), L^{2}(\Omega))$ pullback $\mathscr{D}_{\lambda}$-attractor indeed can attract in $\mathscr{D}_{0}^{1}(\Omega, \sigma)$-norm. Any differentiability on the forcing term is not required.
Citation: Xin Li, Chunyou Sun, Na Zhang. Dynamics for a non-autonomous degenerate parabolic equation in $\mathfrak{D}_{0}^{1}(\Omega, \sigma)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7063-7079. doi: 10.3934/dcds.2016108
References:
[1]

C. T. Anh and T. Q. Bao, Pullback attractors for a non autonomous semilinear degenerate parabolic equation,, Glasgow Math. J., 52 (2010), 537.  doi: 10.1017/S0017089510000418.  Google Scholar

[2]

C. T. Anh, T. Q. Bao and L. T. Thuy, Regularity and fractal dimension of pullback attractors for a non-autonomous semilinear degenerate parabolic equation,, Glasgow Math. J., 55 (2013), 431.  doi: 10.1017/S0017089512000663.  Google Scholar

[3]

P. Caldiroli and R. Musina, On a variational degenerate elliptic problem,, Nonlinear Diff. Equ. Appl., 7 (2000), 187.  doi: 10.1007/s000300050004.  Google Scholar

[4]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non autonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[5]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for non autonomous 2D Navier Stokes equations in some unbounded domains,, C. R. Math. Acad. Sci. Paris, 342 (2006), 263.  doi: 10.1016/j.crma.2005.12.015.  Google Scholar

[6]

A. Cavalheiro, Weighted Sobolev spaces and degenerate elliptic equations,, Bol. Soc. Parana. Mat., 26 (2008), 117.  doi: 10.5269/bspm.v26i1-2.7415.  Google Scholar

[7]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, Physical Oringins and Classical Methods, (1990).   Google Scholar

[8]

E. Dibenedetto, Degenerate Parabolic Equations,, Universitext, (1993).  doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[9]

D. Eidus and S. Kamin, The filtration equation in a class of functions decreasing at infinity,, Proc. Amer. Math. Soc., 120 (1994), 825.  doi: 10.1090/S0002-9939-1994-1169025-2.  Google Scholar

[10]

J. K. Hale and G. Raugel, {Reaction-diffusion equation on thin domains,, J. Math. Pures Appl., 71 (1992), 33.   Google Scholar

[11]

N. Karachalios and N. Zographopoulos, Convergence towards attractors for a degenerate Ginzburg-Landau equation,, Z. Angew. Math. Phys., 56 (2005), 11.  doi: 10.1007/s00033-004-2045-z.  Google Scholar

[12]

N. Karachalios and N. Zographopoulos, On the dynamics of a degenerate parabolic equation: Global bifurcation of stationary states and convergence,, Calc. Var. Partial Differential Equations, 25 (2006), 361.  doi: 10.1007/s00526-005-0347-4.  Google Scholar

[13]

H. Li, S. Ma and C. Zhong, Long-time behavior for a class of degenerate parabolic equations,, Discrete Contin. Dyn. Syst., 34 (2014), 2873.  doi: 10.3934/dcds.2014.34.2873.  Google Scholar

[14]

X. Li, C. Sun and F. Zhou, Pullback attractors for a non-autonomous semilinear degenerate parabolic equation,, Topol. Methods Nonlinear Anal., 47 (2016), 511.  doi: 10.12775/TMNA.2016.011.  Google Scholar

[15]

D. Monticelli and K. Payne, Maximum principles for weak solutions of degenerate elliptic equations with a uniformly elliptic direction,, J. Differential Equations, 247 (2009), 1993.  doi: 10.1016/j.jde.2009.06.024.  Google Scholar

[16]

F. Paronetto, Some new results on the convergence of degenerate elliptic and parabolic equations,, J. Convex Anal., 9 (2002), 31.   Google Scholar

[17]

J. Robinson, Infinite-Dimensional Dynamical Systems,, Cambridge Univ. Press, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[18]

C. Sun and Y. Yuan, $L^p$-type pullback attractors for a semilinear heat equation on time-varying domains,, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1029.  doi: 10.1017/S0308210515000177.  Google Scholar

[19]

C. Sun, Y. Xiao, Z. Tang and Y. Liu, Continuity and pullback attractors for a semilinear heat equation on time-varying domain,, Submitted., ().   Google Scholar

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, New York, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[21]

T. Trujillo and B. X. Wang, Continuity of strong solutions of the reaction-diffusion equation in initial data,, Nonlinear Anal., 69 (2008), 2525.  doi: 10.1016/j.na.2007.08.032.  Google Scholar

[22]

C. Wang and J. Yin, Evolutionary weighted p-Laplacian with boundary degeneracy,, J. Differential Equations, 237 (2007), 421.  doi: 10.1016/j.jde.2007.03.012.  Google Scholar

[23]

M. Yang and P. Kloeden, Random attractors for stochastic semi-linear degenerate parabolic equations,, Nonlinear Analysis: Real World Applications, 12 (2011), 2811.  doi: 10.1016/j.nonrwa.2011.04.007.  Google Scholar

[24]

W. Zhao, $H^{1}$-random attractors for stochastic reaction-diffusion equations with additive noise,, Nonlinear Anal., 84 (2013), 61.  doi: 10.1016/j.na.2013.01.014.  Google Scholar

show all references

References:
[1]

C. T. Anh and T. Q. Bao, Pullback attractors for a non autonomous semilinear degenerate parabolic equation,, Glasgow Math. J., 52 (2010), 537.  doi: 10.1017/S0017089510000418.  Google Scholar

[2]

C. T. Anh, T. Q. Bao and L. T. Thuy, Regularity and fractal dimension of pullback attractors for a non-autonomous semilinear degenerate parabolic equation,, Glasgow Math. J., 55 (2013), 431.  doi: 10.1017/S0017089512000663.  Google Scholar

[3]

P. Caldiroli and R. Musina, On a variational degenerate elliptic problem,, Nonlinear Diff. Equ. Appl., 7 (2000), 187.  doi: 10.1007/s000300050004.  Google Scholar

[4]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non autonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[5]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for non autonomous 2D Navier Stokes equations in some unbounded domains,, C. R. Math. Acad. Sci. Paris, 342 (2006), 263.  doi: 10.1016/j.crma.2005.12.015.  Google Scholar

[6]

A. Cavalheiro, Weighted Sobolev spaces and degenerate elliptic equations,, Bol. Soc. Parana. Mat., 26 (2008), 117.  doi: 10.5269/bspm.v26i1-2.7415.  Google Scholar

[7]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, Physical Oringins and Classical Methods, (1990).   Google Scholar

[8]

E. Dibenedetto, Degenerate Parabolic Equations,, Universitext, (1993).  doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[9]

D. Eidus and S. Kamin, The filtration equation in a class of functions decreasing at infinity,, Proc. Amer. Math. Soc., 120 (1994), 825.  doi: 10.1090/S0002-9939-1994-1169025-2.  Google Scholar

[10]

J. K. Hale and G. Raugel, {Reaction-diffusion equation on thin domains,, J. Math. Pures Appl., 71 (1992), 33.   Google Scholar

[11]

N. Karachalios and N. Zographopoulos, Convergence towards attractors for a degenerate Ginzburg-Landau equation,, Z. Angew. Math. Phys., 56 (2005), 11.  doi: 10.1007/s00033-004-2045-z.  Google Scholar

[12]

N. Karachalios and N. Zographopoulos, On the dynamics of a degenerate parabolic equation: Global bifurcation of stationary states and convergence,, Calc. Var. Partial Differential Equations, 25 (2006), 361.  doi: 10.1007/s00526-005-0347-4.  Google Scholar

[13]

H. Li, S. Ma and C. Zhong, Long-time behavior for a class of degenerate parabolic equations,, Discrete Contin. Dyn. Syst., 34 (2014), 2873.  doi: 10.3934/dcds.2014.34.2873.  Google Scholar

[14]

X. Li, C. Sun and F. Zhou, Pullback attractors for a non-autonomous semilinear degenerate parabolic equation,, Topol. Methods Nonlinear Anal., 47 (2016), 511.  doi: 10.12775/TMNA.2016.011.  Google Scholar

[15]

D. Monticelli and K. Payne, Maximum principles for weak solutions of degenerate elliptic equations with a uniformly elliptic direction,, J. Differential Equations, 247 (2009), 1993.  doi: 10.1016/j.jde.2009.06.024.  Google Scholar

[16]

F. Paronetto, Some new results on the convergence of degenerate elliptic and parabolic equations,, J. Convex Anal., 9 (2002), 31.   Google Scholar

[17]

J. Robinson, Infinite-Dimensional Dynamical Systems,, Cambridge Univ. Press, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[18]

C. Sun and Y. Yuan, $L^p$-type pullback attractors for a semilinear heat equation on time-varying domains,, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1029.  doi: 10.1017/S0308210515000177.  Google Scholar

[19]

C. Sun, Y. Xiao, Z. Tang and Y. Liu, Continuity and pullback attractors for a semilinear heat equation on time-varying domain,, Submitted., ().   Google Scholar

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, New York, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[21]

T. Trujillo and B. X. Wang, Continuity of strong solutions of the reaction-diffusion equation in initial data,, Nonlinear Anal., 69 (2008), 2525.  doi: 10.1016/j.na.2007.08.032.  Google Scholar

[22]

C. Wang and J. Yin, Evolutionary weighted p-Laplacian with boundary degeneracy,, J. Differential Equations, 237 (2007), 421.  doi: 10.1016/j.jde.2007.03.012.  Google Scholar

[23]

M. Yang and P. Kloeden, Random attractors for stochastic semi-linear degenerate parabolic equations,, Nonlinear Analysis: Real World Applications, 12 (2011), 2811.  doi: 10.1016/j.nonrwa.2011.04.007.  Google Scholar

[24]

W. Zhao, $H^{1}$-random attractors for stochastic reaction-diffusion equations with additive noise,, Nonlinear Anal., 84 (2013), 61.  doi: 10.1016/j.na.2013.01.014.  Google Scholar

[1]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[2]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[3]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[4]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[5]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[6]

Guowei Liu, Rui Xue. Pullback dynamic behavior for a non-autonomous incompressible non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2193-2216. doi: 10.3934/dcdsb.2018231

[7]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[8]

Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663

[9]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[10]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[11]

Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019221

[12]

V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 27-38. doi: 10.3934/dcds.2005.12.27

[13]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[14]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[15]

Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020025

[16]

Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181

[17]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[18]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[19]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[20]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]