    December  2016, 36(12): 7169-7189. doi: 10.3934/dcds.2016112

## Exact behavior of positive solutions to elliptic equations with multi-singular inverse square potentials

 1 School of Mathematical and Statistics, Jiangsu Normal University, Xuzhou 221116 2 School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China 3 School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, TX 78539

Received  January 2016 Revised  March 2016 Published  October 2016

In this paper, we study the elliptic equation with a multi-singular inverse square potential $$-\Delta u=\mu\sum_{i=1}^{k}\frac{u}{|x-a_i|^2}-u^p,\ \ x\in \mathbb{R}^N\backslash\{a_i:i\in K\},$$ where $N\geq 3$, $p>1$ and $\mu>(N-2)^2/4k$. In our discussions, the domain is the entire space, and the equation contains multiple singular points. We not only demonstrate the behavior of positive solutions near each singular point $a_i$, but also obtain the behavior of positive solutions as $|x|\rightarrow \infty$. Under suitable conditions, we show that the equation has a unique positive solution $w$, which satisfies $$\lim\limits_{|x|\rightarrow\infty}\frac{w(x)}{|x|^{-\frac{2}{p-1}}}=\left[k\mu+\frac{2}{p-1}\left(\frac{2}{p-1}+2-N\right)\right]^{1/(p-1)}$$ and $$\lim\limits_{|x-a_i|\rightarrow 0}\frac{w(x)}{|x-a_i|^{-\frac{2}{p-1}}}=\left[\mu+\frac{2}{p-1}\left(\frac{2}{p-1}+2-N\right)\right]^{1/(p-1)}.$$
Citation: Lei Wei, Xiyou Cheng, Zhaosheng Feng. Exact behavior of positive solutions to elliptic equations with multi-singular inverse square potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7169-7189. doi: 10.3934/dcds.2016112
##### References:
  D. Cao and P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, J. Differential Equations, 224 (2006), 332.  doi: 10.1016/j.jde.2005.07.010.  Google Scholar  F. C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials,, Memoirs of AMS, (2014). Google Scholar  F.C. Cîrstea and Y. Du, Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity,, J. Funct. Anal., 250 (2007), 317.  doi: 10.1016/j.jfa.2007.05.005.  Google Scholar  F.C. Cîrstea and Y. Du, Isolated singularities for weighted quasilinear elliptic equations,, J. Funct. Anal., 259 (2010), 174.  doi: 10.1016/j.jfa.2010.03.015.  Google Scholar  Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations,, Vol I: Maximum principle and applications, (2006).  doi: 10.1142/9789812774446.  Google Scholar  Y. Du and Z. M. Guo, The degenerate logistic model and a singularly mixed boundary blow-up problem,, Disrete Conin. Dyn. Syst., 14 (2006), 1. Google Scholar  Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions,, J. London Math. Soc., 64 (2001), 107.  doi: 10.1017/S0024610701002289.  Google Scholar  M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations,, J. Evol. Equ., 3 (2003), 637.  doi: 10.1007/s00028-003-0122-y.  Google Scholar  L. Wei and Y. Du, Exact singular behavior of positive solutions to nonlinear elliptic equations with a Hardy potential,, J. Lond. Math. Soc., 91 (2015), 731.  doi: 10.1112/jlms/jdv003.  Google Scholar  L. Wei and Z. Feng, Isolated singularity for semilinear elliptic equations,, Discrete Contin. Dyn. Syst., 35 (2015), 3239.  doi: 10.3934/dcds.2015.35.3239.  Google Scholar

show all references

##### References:
  D. Cao and P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, J. Differential Equations, 224 (2006), 332.  doi: 10.1016/j.jde.2005.07.010.  Google Scholar  F. C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials,, Memoirs of AMS, (2014). Google Scholar  F.C. Cîrstea and Y. Du, Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity,, J. Funct. Anal., 250 (2007), 317.  doi: 10.1016/j.jfa.2007.05.005.  Google Scholar  F.C. Cîrstea and Y. Du, Isolated singularities for weighted quasilinear elliptic equations,, J. Funct. Anal., 259 (2010), 174.  doi: 10.1016/j.jfa.2010.03.015.  Google Scholar  Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations,, Vol I: Maximum principle and applications, (2006).  doi: 10.1142/9789812774446.  Google Scholar  Y. Du and Z. M. Guo, The degenerate logistic model and a singularly mixed boundary blow-up problem,, Disrete Conin. Dyn. Syst., 14 (2006), 1. Google Scholar  Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions,, J. London Math. Soc., 64 (2001), 107.  doi: 10.1017/S0024610701002289.  Google Scholar  M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations,, J. Evol. Equ., 3 (2003), 637.  doi: 10.1007/s00028-003-0122-y.  Google Scholar  L. Wei and Y. Du, Exact singular behavior of positive solutions to nonlinear elliptic equations with a Hardy potential,, J. Lond. Math. Soc., 91 (2015), 731.  doi: 10.1112/jlms/jdv003.  Google Scholar  L. Wei and Z. Feng, Isolated singularity for semilinear elliptic equations,, Discrete Contin. Dyn. Syst., 35 (2015), 3239.  doi: 10.3934/dcds.2015.35.3239.  Google Scholar
  Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017  Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363  Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527  Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747  Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123  Lucio Boccardo, Luigi Orsina, Ireneo Peral. A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 513-523. doi: 10.3934/dcds.2006.16.513  Houda Mokrani. Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1619-1636. doi: 10.3934/cpaa.2009.8.1619  Farman Mamedov, Sara Monsurrò, Maria Transirico. Potential estimates and applications to elliptic equations. Conference Publications, 2015, 2015 (special) : 793-800. doi: 10.3934/proc.2015.0793  Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033  Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079  Luiz F. O. Faria. Existence and uniqueness of positive solutions for singular biharmonic elliptic systems. Conference Publications, 2015, 2015 (special) : 400-408. doi: 10.3934/proc.2015.0400  Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949  M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure & Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653  Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31  Huyuan Chen, Feng Zhou. Isolated singularities for elliptic equations with hardy operator and source nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2945-2964. doi: 10.3934/dcds.2018126  Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191  Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943  Maria Francesca Betta, Olivier Guibé, Anna Mercaldo. Uniqueness for Neumann problems for nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1023-1048. doi: 10.3934/cpaa.2019050  L. Ke. Boundary behaviors for solutions of singular elliptic equations. Conference Publications, 1998, 1998 (Special) : 388-396. doi: 10.3934/proc.1998.1998.388  Shuangjie Peng. Remarks on singular critical growth elliptic equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 707-719. doi: 10.3934/dcds.2006.14.707

2018 Impact Factor: 1.143