• Previous Article
    A powered Gronwall-type inequality and applications to stochastic differential equations
  • DCDS Home
  • This Issue
  • Next Article
    Exact behavior of positive solutions to elliptic equations with multi-singular inverse square potentials
December  2016, 36(12): 7191-7206. doi: 10.3934/dcds.2016113

On large deviations for amenable group actions

1. 

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing, Jiangsu 210023, China, China

2. 

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Jiangsu

Received  August 2015 Revised  July 2016 Published  October 2016

By proving an amenable version of Katok's entropy formula and handling the quasi tiling techniques, we establish large deviations bounds for countable discrete amenable group actions. This generalizes the classical results of Lai-Sang Young [21].
Citation: Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113
References:
[1]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136. doi: 10.1090/S0002-9947-1973-0338317-X.

[2]

M. Brin and A. Katok, On local entropy, Lecture Notes in Mathematics, Springer, Berlin, 1007 (1983), 30-38. doi: 10.1007/BFb0061408.

[3]

N. Chung, Topological pressure and the variational principle for actions of sofic groups, Ergod. Th. Dynam. Sys., 33 (2013), 1363-1390. doi: 10.1017/S0143385712000429.

[4]

N. Chung and H. Li, Homoclinic group, IE group, and expansive algebraic actions, Invent. Math., 199 (2015), 805-858. doi: 10.1007/s00222-014-0524-1.

[5]

T. Downarowicz, D. Huczek and G. Zhang, Tilings of amenable groups, to appear in J. Reine Angew. Math.arXiv:1502.02413v1.

[6]

A. Eizenberg, Y. Kifer and B. Weiss, Large deviations for $Z^d$-Actions, Comm. Math. Physics, 164 (1994), 433-454. doi: 10.1007/BF02101485.

[7]

R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics, Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4613-8533-2.

[8]

W. Huang, X. Ye and G. Zhang, Local entropy theory for a countable discrete amenable group action, J. Funct. Anal., 261 (2011), 1028-1082. doi: 10.1016/j.jfa.2011.04.014.

[9]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. I.H.E.S., 51 (1980), 137-173.

[10]

Y. Kifer, Multidimensional random subshifts of finite type and their large deviations, Probability Theory and Related Fields, 103 (1995), 223-248. doi: 10.1007/BF01204216.

[11]

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259-295. doi: 10.1007/s002220100162.

[12]

B. Liang and K. Yan, Topological pressure for sub-additive potentials of amenable group actions, J. Funct. Anal., 262 (2012), 584-601. doi: 10.1016/j.jfa.2011.09.020.

[13]

J. M. Ollagnier, Ergodic Theory and Statistical Mechanics, Lecture Notes in Math. 1115, Springer-Verlag, Berlin, 1985. doi: 10.1007/BFb0101575.

[14]

J. M. Ollagnier and D. Pinchon, The variational principle, Studia Math., 72 (1982), 151-159.

[15]

D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48 (1987), 1-141. doi: 10.1007/BF02790325.

[16]

L. Rey-Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems, Ergod. Th. Dynam. Sys., 28 (2008), 587-612. doi: 10.1017/S0143385707000478.

[17]

A. Shulman, Maximal ergodic theorems on groups, Dep. Lit. NIINTI, No.2184, 1988.

[18]

A. M. Stepin and A. T. Tagi-Zade, Variational characterization of topological pressure of the amenable groups of transformations, Dokl. Akad. Nauk SSSR, 254 (1980), 545-549 (in Russian).

[19]

T. Ward and Q. Zhang, The Abramov-Rokhlin entropy addition formula for amenable group action, Monatshefte für Mathematik, 114 (1992), 317-329. doi: 10.1007/BF01299386.

[20]

B. Weiss, Actions of amenable groups, in Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 310 (2003), 226-262. doi: 10.1017/CBO9780511546716.012.

[21]

L.-S. Young, Some large deviation results for dynamical systems, Trans. Amer. Math. Soc., 318 (1990), 525-543. doi: 10.2307/2001318.

[22]

D. Zheng and E. Chen, Bowen entropy for actions of amenable groups, Israel J. Math., 212 (2016), 895-911. doi: 10.1007/s11856-016-1312-y.

show all references

References:
[1]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136. doi: 10.1090/S0002-9947-1973-0338317-X.

[2]

M. Brin and A. Katok, On local entropy, Lecture Notes in Mathematics, Springer, Berlin, 1007 (1983), 30-38. doi: 10.1007/BFb0061408.

[3]

N. Chung, Topological pressure and the variational principle for actions of sofic groups, Ergod. Th. Dynam. Sys., 33 (2013), 1363-1390. doi: 10.1017/S0143385712000429.

[4]

N. Chung and H. Li, Homoclinic group, IE group, and expansive algebraic actions, Invent. Math., 199 (2015), 805-858. doi: 10.1007/s00222-014-0524-1.

[5]

T. Downarowicz, D. Huczek and G. Zhang, Tilings of amenable groups, to appear in J. Reine Angew. Math.arXiv:1502.02413v1.

[6]

A. Eizenberg, Y. Kifer and B. Weiss, Large deviations for $Z^d$-Actions, Comm. Math. Physics, 164 (1994), 433-454. doi: 10.1007/BF02101485.

[7]

R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics, Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4613-8533-2.

[8]

W. Huang, X. Ye and G. Zhang, Local entropy theory for a countable discrete amenable group action, J. Funct. Anal., 261 (2011), 1028-1082. doi: 10.1016/j.jfa.2011.04.014.

[9]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. I.H.E.S., 51 (1980), 137-173.

[10]

Y. Kifer, Multidimensional random subshifts of finite type and their large deviations, Probability Theory and Related Fields, 103 (1995), 223-248. doi: 10.1007/BF01204216.

[11]

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259-295. doi: 10.1007/s002220100162.

[12]

B. Liang and K. Yan, Topological pressure for sub-additive potentials of amenable group actions, J. Funct. Anal., 262 (2012), 584-601. doi: 10.1016/j.jfa.2011.09.020.

[13]

J. M. Ollagnier, Ergodic Theory and Statistical Mechanics, Lecture Notes in Math. 1115, Springer-Verlag, Berlin, 1985. doi: 10.1007/BFb0101575.

[14]

J. M. Ollagnier and D. Pinchon, The variational principle, Studia Math., 72 (1982), 151-159.

[15]

D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48 (1987), 1-141. doi: 10.1007/BF02790325.

[16]

L. Rey-Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems, Ergod. Th. Dynam. Sys., 28 (2008), 587-612. doi: 10.1017/S0143385707000478.

[17]

A. Shulman, Maximal ergodic theorems on groups, Dep. Lit. NIINTI, No.2184, 1988.

[18]

A. M. Stepin and A. T. Tagi-Zade, Variational characterization of topological pressure of the amenable groups of transformations, Dokl. Akad. Nauk SSSR, 254 (1980), 545-549 (in Russian).

[19]

T. Ward and Q. Zhang, The Abramov-Rokhlin entropy addition formula for amenable group action, Monatshefte für Mathematik, 114 (1992), 317-329. doi: 10.1007/BF01299386.

[20]

B. Weiss, Actions of amenable groups, in Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 310 (2003), 226-262. doi: 10.1017/CBO9780511546716.012.

[21]

L.-S. Young, Some large deviation results for dynamical systems, Trans. Amer. Math. Soc., 318 (1990), 525-543. doi: 10.2307/2001318.

[22]

D. Zheng and E. Chen, Bowen entropy for actions of amenable groups, Israel J. Math., 212 (2016), 895-911. doi: 10.1007/s11856-016-1312-y.

[1]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[2]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[3]

Jean-Paul Thouvenot. The work of Lewis Bowen on the entropy theory of non-amenable group actions. Journal of Modern Dynamics, 2019, 15: 133-141. doi: 10.3934/jmd.2019016

[4]

Masayuki Asaoka, Kenichiro Yamamoto. On the large deviation rates of non-entropy-approachable measures. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4401-4410. doi: 10.3934/dcds.2013.33.4401

[5]

Benjamin Hellouin de Menibus, Hugo Maturana Cornejo. Necessary conditions for tiling finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2335-2346. doi: 10.3934/dcds.2020116

[6]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[7]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008

[8]

Tao Yu, Guohua Zhang, Ruifeng Zhang. Discrete spectrum for amenable group actions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5871-5886. doi: 10.3934/dcds.2021099

[9]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[10]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[11]

Xiaojun Huang, Zhiqiang Li, Yunhua Zhou. A variational principle of topological pressure on subsets for amenable group actions. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2687-2703. doi: 10.3934/dcds.2020146

[12]

Xiaojun Huang, Yuan Lian, Changrong Zhu. A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 959-993. doi: 10.3934/dcds.2019040

[13]

Marcelo Sobottka. Topological quasi-group shifts. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77

[14]

Kazuo Yamazaki. Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 913-938. doi: 10.3934/dcdsb.2018048

[15]

Ran Wang, Jianliang Zhai, Shiling Zhang. Large deviation principle for stochastic Burgers type equation with reflection. Communications on Pure and Applied Analysis, 2022, 21 (1) : 213-238. doi: 10.3934/cpaa.2021175

[16]

Yves Guivarc'h. On the spectrum of a large subgroup of a semisimple group. Journal of Modern Dynamics, 2008, 2 (1) : 15-42. doi: 10.3934/jmd.2008.2.15

[17]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[18]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[19]

Peng Zhang. Multiperiod mean semi-absolute deviation interval portfolio selection with entropy constraints. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1169-1187. doi: 10.3934/jimo.2016067

[20]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (262)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]