    December  2016, 36(12): 7207-7234. doi: 10.3934/dcds.2016114

## A powered Gronwall-type inequality and applications to stochastic differential equations

 1 Institute of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan 610066, China 2 Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Received  February 2016 Revised  May 2016 Published  October 2016

In this paper we study a powered integral inequality involving a finite sum, which can be used to solve the inequalities with singular kernels. We present that the solution of the inequality is decided by a finite recursion, whose result is proved to be a continuous, bounded or asymptotic function. Meanwhile, in order to overcome an obstacle from powers of integrals, we modify the method of monotonization into the powered monotonization. Furthermore, relying on the result and our technique of concavification, we discuss a generalized stochastic integral inequality, and give an estimate of the mean square. In the end, as applications, we study uniform boundedness and continuous dependence of solutions for a class of stochastic differential equation in mean square.
Citation: Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114
##### References:
  R. P. Agarwal, S. Deng and W. Zhang, Generalization of a retarded Gronwall-like inequality and its applications, Appl. Math. Comput., 165 (2005), 599-612. doi: 10.1016/j.amc.2004.04.067.  Google Scholar  K. Amano, A stochastic Gronwall inequality and its applications, J. Ineq. Pure Appl. Math., 6 (2005), Art. 17, 5pp. Google Scholar  R. Bellman, The stability of solutions of linear differential equations, Duke Math. J., 10 (1943), 643-647. doi: 10.1215/S0012-7094-43-01059-2.  Google Scholar  I. A. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problem of differential equation, Acta Math. Acad. Sci. Hung., 7 (1956), 81-94. doi: 10.1007/BF02022967.  Google Scholar  W. Cheung, Q. Ma and S. Tseng, Some new nonlinear weakly singular integral inequalities of Wendroff type with applications, J. Inequal. Appl., 2008 (2008), Art. ID 909156, 12pp. doi: 10.1155/2008/909156.  Google Scholar  S. Deng and C. Prather, Generalization of an impulsive nonlinear singular Gronwall-Bihari inequality with delay, J. Ineq. Pure Appl. Math., 9 (2008), Art. 34, 11pp. Google Scholar  A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 2006. Google Scholar  T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20 (1919), 292-296. doi: 10.2307/1967124.  Google Scholar  G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1988. doi: 10.1007/BF01218837.  Google Scholar  D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin-New York, 1981. Google Scholar  K. Itô, On a stochastic integral equation, Proc. Japan Acad., 22 (1946), 32-35. doi: 10.3792/pja/1195572371.  Google Scholar  A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Math. Stud., 204, North-Holland, Amsterdam, 2006. Google Scholar  O. Lipovan, A retarded Gronwall-like inequality and its applications, J. Math. Anal. Appl., 252 (2000), 389-401. doi: 10.1006/jmaa.2000.7085.  Google Scholar  Q. Ma and E. Yang, Estimates on solutions of some weakly singular Volterra integral inequalities, Acta Math. Appl. Sinca, 25 (2002), 505-515. Google Scholar  M. Medved, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl., 214 (1997), 349-366. doi: 10.1006/jmaa.1997.5532.  Google Scholar  G. Mittag-Leffler, Sur la nouvelle fonction $E_\alpha(x)$, C. R. Acad. Sci. Paris, 137 (1903), 554-558. Google Scholar  B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, $6^{th}$ edition, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-14394-6.  Google Scholar  B. G. Pachpatte, Inequalities for Differential and Integral Equations, Math. in Sci. and Eng., 197, Academic Press, San Diego, 1998. Google Scholar  M. Pinto, Integral inequalities of Bihari-type and applications, Funkcial. Ekvac., 33 (1990), 387-403. Google Scholar  E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., 43, Princeton University Press, New Jersey, 1993. Google Scholar  N.-E. Tatar, An impulsive nonlinear singular version of the Gronwall-Bihari inequality, J. Inequal. Appl., 2006 (2006), Art. ID 84561, 12pp. doi: 10.1155/JIA/2006/84561.  Google Scholar  W. Wang, A generalized retarded Gronwall-like inequality in two variables and applications to BVP, Appl. Math. Comput., 191 (2007), 144-154. doi: 10.1016/j.amc.2007.02.099.  Google Scholar  M. Wu and N. Huang, Stochastic integral inequalities with applications, Math. Inequal. Appl., 13 (2010), 667-677. doi: 10.7153/mia-13-48.  Google Scholar  T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11 (1971), 155-167. Google Scholar  T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations II, J. Math. Kyoto Univ., 11 (1971), 533-563. Google Scholar  Y. Yan, Nonlinear Gronwall-Bellman type integral inequalities with Maxima, Math. Inequal. Appl., 16 (2013), 911-928. doi: 10.7153/mia-16-71.  Google Scholar  H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar  W. Zhang, PM functions, their characteristic intervals and iterative roots, Ann. Polon. Math., 65 (1997), 119-128. Google Scholar

show all references

##### References:
  R. P. Agarwal, S. Deng and W. Zhang, Generalization of a retarded Gronwall-like inequality and its applications, Appl. Math. Comput., 165 (2005), 599-612. doi: 10.1016/j.amc.2004.04.067.  Google Scholar  K. Amano, A stochastic Gronwall inequality and its applications, J. Ineq. Pure Appl. Math., 6 (2005), Art. 17, 5pp. Google Scholar  R. Bellman, The stability of solutions of linear differential equations, Duke Math. J., 10 (1943), 643-647. doi: 10.1215/S0012-7094-43-01059-2.  Google Scholar  I. A. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problem of differential equation, Acta Math. Acad. Sci. Hung., 7 (1956), 81-94. doi: 10.1007/BF02022967.  Google Scholar  W. Cheung, Q. Ma and S. Tseng, Some new nonlinear weakly singular integral inequalities of Wendroff type with applications, J. Inequal. Appl., 2008 (2008), Art. ID 909156, 12pp. doi: 10.1155/2008/909156.  Google Scholar  S. Deng and C. Prather, Generalization of an impulsive nonlinear singular Gronwall-Bihari inequality with delay, J. Ineq. Pure Appl. Math., 9 (2008), Art. 34, 11pp. Google Scholar  A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 2006. Google Scholar  T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20 (1919), 292-296. doi: 10.2307/1967124.  Google Scholar  G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1988. doi: 10.1007/BF01218837.  Google Scholar  D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin-New York, 1981. Google Scholar  K. Itô, On a stochastic integral equation, Proc. Japan Acad., 22 (1946), 32-35. doi: 10.3792/pja/1195572371.  Google Scholar  A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Math. Stud., 204, North-Holland, Amsterdam, 2006. Google Scholar  O. Lipovan, A retarded Gronwall-like inequality and its applications, J. Math. Anal. Appl., 252 (2000), 389-401. doi: 10.1006/jmaa.2000.7085.  Google Scholar  Q. Ma and E. Yang, Estimates on solutions of some weakly singular Volterra integral inequalities, Acta Math. Appl. Sinca, 25 (2002), 505-515. Google Scholar  M. Medved, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl., 214 (1997), 349-366. doi: 10.1006/jmaa.1997.5532.  Google Scholar  G. Mittag-Leffler, Sur la nouvelle fonction $E_\alpha(x)$, C. R. Acad. Sci. Paris, 137 (1903), 554-558. Google Scholar  B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, $6^{th}$ edition, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-14394-6.  Google Scholar  B. G. Pachpatte, Inequalities for Differential and Integral Equations, Math. in Sci. and Eng., 197, Academic Press, San Diego, 1998. Google Scholar  M. Pinto, Integral inequalities of Bihari-type and applications, Funkcial. Ekvac., 33 (1990), 387-403. Google Scholar  E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., 43, Princeton University Press, New Jersey, 1993. Google Scholar  N.-E. Tatar, An impulsive nonlinear singular version of the Gronwall-Bihari inequality, J. Inequal. Appl., 2006 (2006), Art. ID 84561, 12pp. doi: 10.1155/JIA/2006/84561.  Google Scholar  W. Wang, A generalized retarded Gronwall-like inequality in two variables and applications to BVP, Appl. Math. Comput., 191 (2007), 144-154. doi: 10.1016/j.amc.2007.02.099.  Google Scholar  M. Wu and N. Huang, Stochastic integral inequalities with applications, Math. Inequal. Appl., 13 (2010), 667-677. doi: 10.7153/mia-13-48.  Google Scholar  T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11 (1971), 155-167. Google Scholar  T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations II, J. Math. Kyoto Univ., 11 (1971), 533-563. Google Scholar  Y. Yan, Nonlinear Gronwall-Bellman type integral inequalities with Maxima, Math. Inequal. Appl., 16 (2013), 911-928. doi: 10.7153/mia-16-71.  Google Scholar  H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar  W. Zhang, PM functions, their characteristic intervals and iterative roots, Ann. Polon. Math., 65 (1997), 119-128. Google Scholar
  Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085  Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818  Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017  Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure & Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241  Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121  Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645  Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094  Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929  Tianxiao Wang, Yufeng Shi. Symmetrical solutions of backward stochastic Volterra integral equations and their applications. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 251-274. doi: 10.3934/dcdsb.2010.14.251  Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control & Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613  Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432  Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047  Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329  Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977  Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1653-1675. doi: 10.3934/jimo.2018116  Yushi Hamaguchi. Extended backward stochastic Volterra integral equations and their applications to time-Inconsistent stochastic recursive control problems. Mathematical Control & Related Fields, 2021, 11 (2) : 433-478. doi: 10.3934/mcrf.2020043  A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 395-413. doi: 10.3934/cpaa.2006.5.395  Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic & Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491  G. C. Yang, K. Q. Lan. Systems of singular integral equations and applications to existence of reversed flow solutions of Falkner-Skan equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2465-2495. doi: 10.3934/cpaa.2013.12.2465  Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

2020 Impact Factor: 1.392