January  2017, 37(1): 257-264. doi: 10.3934/dcds.2017010

Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$

1. 

School of Mathematical Sciences, Monash University, VIC 3800, Australia

2. 

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

* Corresponding author: zihua.guo@monash.edu

Received  April 2016 Revised  June 2016 Published  November 2016

Fund Project: The second author is supported by NSFC grant 11571118.

We prove that the derivative nonlinear Schrödinger equation is globally well-posed in $H^{\frac 12} (\mathbb{R} )$ when the mass of initial data is strictly less than 4π.

Citation: Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010
References:
[1]

M. Agueh, Sharp Gagliardo-Nirenberg Inequalities and Mass Transport Theory, J.Dyn.Differ.Equ., 18 (2006), 1069-1093.  doi: 10.1007/s10884-006-9039-9.  Google Scholar

[2]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.  doi: 10.1137/S0036141001384387.  Google Scholar

[3]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivatives, SIAM J. Math. Anal., 34 (2002), 64-86.  doi: 10.1137/S0036141001394541.  Google Scholar

[4]

Z. GuoN. HayashiY. Lin and P. I. Naumkin, Modified scattering operator for the derivative nonlinear Schrodinger equation, SIAM J. Math. Anal., 45 (2013), 3854-3871.  doi: 10.1137/12089956X.  Google Scholar

[5]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonl. Anal., 20 (1993), 823-833.  doi: 10.1016/0362-546X(93)90071-Y.  Google Scholar

[6]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Physica D., 55 (1992), 14-36.  doi: 10.1016/0167-2789(92)90185-P.  Google Scholar

[7]

N. Hayashi and T. Ozawa, Finite energy solution of nonlinear Schr¨odinger equations of derivative type, SIAM J. Math. Anal., 25 (1994), 1488-1503.  doi: 10.1137/S0036141093246129.  Google Scholar

[8]

D. J. Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 17 (1978), 789-801.   Google Scholar

[9]

K. KondoK. Kajiwara and K. Matsui, Solution and integrability of a generalized derivative nonlinear Schrödinger equation, J. Phys. Soc. Japan, 66 (1997), 60-66.  doi: 10.1143/JPSJ.66.60.  Google Scholar

[10]

X. LiuG. Simpson and C. Sulem, Focusing singularity in a derivative nonlinear Schr¨odinger equation, Physica D: Nonlinear Phenomena, 262 (2013), 48-58.  doi: 10.1016/j.physd.2013.07.011.  Google Scholar

[11]

C. MiaoY. Wu and G. Xu, Global well-posedness for Schr¨odinger equation with derivative in $H^{\frac 12} (\mathbb{R} )$, J. Diff. Equ., 251 (2011), 2164-2195.  doi: 10.1016/j.jde.2011.07.004.  Google Scholar

[12]

W. MioT. OginoK. Minami and S. Takeda, Modified nonlinear Schrödinger equation for Alfven waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, 41 (1976), 265-271.  doi: 10.1143/JPSJ.41.265.  Google Scholar

[13]

E. Mj∅lhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys., 16 (1976), 321-334.   Google Scholar

[14]

T. Ozawa, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., 45 (1996), 137-163.  doi: 10.1512/iumj.1996.45.1962.  Google Scholar

[15]

H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Diff. Equ., 4 (1990), 561-680.   Google Scholar

[16]

H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Diff. Equ., 42 (2001), 1-23.   Google Scholar

[17]

T. Tsuchida and M. Wadati, Complete integrability of derivative nonlinear Schrödinger-type equations, Inverse Problems, 15 (1999), 1363-1373.  doi: 10.1088/0266-5611/15/5/317.  Google Scholar

[18]

Y. Wu, Global well-posedness of the derivative nonlinear Schrödinger equations in energy space, Analysis & PDE, 6 (2013), 1989-2002.  doi: 10.2140/apde.2013.6.1989.  Google Scholar

[19]

Y. Wu, Global well-posedness on the derivative nonlinear Schrödinger equation, Analysis & PDE, 8 (2015), 1101-1112.  doi: 10.2140/apde.2015.8.1101.  Google Scholar

show all references

References:
[1]

M. Agueh, Sharp Gagliardo-Nirenberg Inequalities and Mass Transport Theory, J.Dyn.Differ.Equ., 18 (2006), 1069-1093.  doi: 10.1007/s10884-006-9039-9.  Google Scholar

[2]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.  doi: 10.1137/S0036141001384387.  Google Scholar

[3]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivatives, SIAM J. Math. Anal., 34 (2002), 64-86.  doi: 10.1137/S0036141001394541.  Google Scholar

[4]

Z. GuoN. HayashiY. Lin and P. I. Naumkin, Modified scattering operator for the derivative nonlinear Schrodinger equation, SIAM J. Math. Anal., 45 (2013), 3854-3871.  doi: 10.1137/12089956X.  Google Scholar

[5]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonl. Anal., 20 (1993), 823-833.  doi: 10.1016/0362-546X(93)90071-Y.  Google Scholar

[6]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Physica D., 55 (1992), 14-36.  doi: 10.1016/0167-2789(92)90185-P.  Google Scholar

[7]

N. Hayashi and T. Ozawa, Finite energy solution of nonlinear Schr¨odinger equations of derivative type, SIAM J. Math. Anal., 25 (1994), 1488-1503.  doi: 10.1137/S0036141093246129.  Google Scholar

[8]

D. J. Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 17 (1978), 789-801.   Google Scholar

[9]

K. KondoK. Kajiwara and K. Matsui, Solution and integrability of a generalized derivative nonlinear Schrödinger equation, J. Phys. Soc. Japan, 66 (1997), 60-66.  doi: 10.1143/JPSJ.66.60.  Google Scholar

[10]

X. LiuG. Simpson and C. Sulem, Focusing singularity in a derivative nonlinear Schr¨odinger equation, Physica D: Nonlinear Phenomena, 262 (2013), 48-58.  doi: 10.1016/j.physd.2013.07.011.  Google Scholar

[11]

C. MiaoY. Wu and G. Xu, Global well-posedness for Schr¨odinger equation with derivative in $H^{\frac 12} (\mathbb{R} )$, J. Diff. Equ., 251 (2011), 2164-2195.  doi: 10.1016/j.jde.2011.07.004.  Google Scholar

[12]

W. MioT. OginoK. Minami and S. Takeda, Modified nonlinear Schrödinger equation for Alfven waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, 41 (1976), 265-271.  doi: 10.1143/JPSJ.41.265.  Google Scholar

[13]

E. Mj∅lhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys., 16 (1976), 321-334.   Google Scholar

[14]

T. Ozawa, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., 45 (1996), 137-163.  doi: 10.1512/iumj.1996.45.1962.  Google Scholar

[15]

H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Diff. Equ., 4 (1990), 561-680.   Google Scholar

[16]

H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Diff. Equ., 42 (2001), 1-23.   Google Scholar

[17]

T. Tsuchida and M. Wadati, Complete integrability of derivative nonlinear Schrödinger-type equations, Inverse Problems, 15 (1999), 1363-1373.  doi: 10.1088/0266-5611/15/5/317.  Google Scholar

[18]

Y. Wu, Global well-posedness of the derivative nonlinear Schrödinger equations in energy space, Analysis & PDE, 6 (2013), 1989-2002.  doi: 10.2140/apde.2013.6.1989.  Google Scholar

[19]

Y. Wu, Global well-posedness on the derivative nonlinear Schrödinger equation, Analysis & PDE, 8 (2015), 1101-1112.  doi: 10.2140/apde.2015.8.1101.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[15]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (105)
  • HTML views (59)
  • Cited by (10)

Other articles
by authors

[Back to Top]