January  2017, 37(1): 281-293. doi: 10.3934/dcds.2017012

Discrete Schrödinger equation and ill-posedness for the Euler equation

1. 

304 Fine Hall, Princeton, NJ 08544, USA

2. 

Kassar House, 151 Thayer street, Providence, RI 02912, USA

* Corresponding author: In-Jee Jeong

Received  November 2015 Revised  September 2016 Published  November 2016

Fund Project: The second author is partly funded by the Sloan foundation and by the NSF grant DMS-1362940.

We consider the 2D Euler equation with periodic boundary conditions in a family of Banach spaces based on the Fourier coefficients, and show that it is ill-posed in the sense that 'norm inflation' occurs. The proof is based on the observation that the evolution of certain perturbations of the 'Kolmogorov flow' given in velocity by
$U(x,y) = \left( {\begin{array}{*{20}{c}}{\cos \;y}\\0\end{array}} \right)$
can be well approximated by the linear Schrödinger equation, at least for a short period of time.
Citation: In-Jee Jeong, Benoit Pausader. Discrete Schrödinger equation and ill-posedness for the Euler equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 281-293. doi: 10.3934/dcds.2017012
References:
[1]

J. Bourgain and D. Li, Strong Ill-posedness of the incompressible Euler equation inborderline Sobolev spaces, Invent. Math., 20 (2015), 97-157. doi: 10.1007/s00222-014-0548-6.

[2]

J. Bourgain and D. Li, Strong illposedness of the incompressible Euler equation in integer $C^m$ spaces, Geom. Funct. Anal., 25 (2015), 1-86. doi: 10.1007/s00039-015-0311-1.

[3]

A. Cheskidov and R. Shvydkoy, Ill-posedness of the basic equations of fluid dynamics in Besov spaces, Proceedings of AMS, 138 (2010), 1059-1067. doi: 10.1090/S0002-9939-09-10141-7.

[4]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970), 102-163. doi: 10.2307/1970699.

[5]

T. Elgindi and N. Masmoudi, L Ill-posedness for a class of equations arising in hydrodynamics, preprint, arXiv: 1405.2478v2.

[6]

A. Grünrock and S. Herr, Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM Journal on Mathematical Analysis, 39 (2008), 1890-1920. doi: 10.1137/070689139.

[7]

T. Kato, Nonstationary flows of viscous and ideal fluids in $\mathbb{R}^3$, J. Func. Anal., 9 (1972), 296-305. doi: 10.1016/0022-1236(72)90003-1.

[8]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740.

[9]

J. Mattingly and Ya. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations, Commun. Contemp. Math., 1 (1999), 497-516. doi: 10.1142/S0219199799000183.

show all references

References:
[1]

J. Bourgain and D. Li, Strong Ill-posedness of the incompressible Euler equation inborderline Sobolev spaces, Invent. Math., 20 (2015), 97-157. doi: 10.1007/s00222-014-0548-6.

[2]

J. Bourgain and D. Li, Strong illposedness of the incompressible Euler equation in integer $C^m$ spaces, Geom. Funct. Anal., 25 (2015), 1-86. doi: 10.1007/s00039-015-0311-1.

[3]

A. Cheskidov and R. Shvydkoy, Ill-posedness of the basic equations of fluid dynamics in Besov spaces, Proceedings of AMS, 138 (2010), 1059-1067. doi: 10.1090/S0002-9939-09-10141-7.

[4]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970), 102-163. doi: 10.2307/1970699.

[5]

T. Elgindi and N. Masmoudi, L Ill-posedness for a class of equations arising in hydrodynamics, preprint, arXiv: 1405.2478v2.

[6]

A. Grünrock and S. Herr, Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM Journal on Mathematical Analysis, 39 (2008), 1890-1920. doi: 10.1137/070689139.

[7]

T. Kato, Nonstationary flows of viscous and ideal fluids in $\mathbb{R}^3$, J. Func. Anal., 9 (1972), 296-305. doi: 10.1016/0022-1236(72)90003-1.

[8]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740.

[9]

J. Mattingly and Ya. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations, Commun. Contemp. Math., 1 (1999), 497-516. doi: 10.1142/S0219199799000183.

[1]

Tsukasa Iwabuchi, Kota Uriya. Ill-posedness for the quadratic nonlinear Schrödinger equation with nonlinearity $|u|^2$. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1395-1405. doi: 10.3934/cpaa.2015.14.1395

[2]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

[3]

Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565

[4]

Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002

[5]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

[6]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[7]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[8]

Yannis Angelopoulos. Well-posedness and ill-posedness results for the Novikov-Veselov equation. Communications on Pure & Applied Analysis, 2016, 15 (3) : 727-760. doi: 10.3934/cpaa.2016.15.727

[9]

Adán J. Corcho. Ill-Posedness for the Benney system. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 965-972. doi: 10.3934/dcds.2006.15.965

[10]

Marcel Braukhoff. Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness. Kinetic & Related Models, 2019, 12 (2) : 445-482. doi: 10.3934/krm.2019019

[11]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the instability of the nonlinear Schrödinger equation below the energy norm. Communications on Pure & Applied Analysis, 2003, 2 (1) : 33-50. doi: 10.3934/cpaa.2003.2.33

[12]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[13]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[14]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[15]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[16]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[17]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[18]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[19]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[20]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (5)
  • Cited by (0)

Other articles
by authors

[Back to Top]