We consider the 2D Euler equation with periodic boundary conditions in a family of Banach spaces based on the Fourier coefficients, and show that it is ill-posed in the sense that 'norm inflation' occurs. The proof is based on the observation that the evolution of certain perturbations of the 'Kolmogorov flow' given in velocity by
$U(x,y) = \left( {\begin{array}{*{20}{c}}{\cos \;y}\\0\end{array}} \right)$
can be well approximated by the linear Schrödinger equation, at least for a short period of time.
Citation: |
J. Bourgain and D. Li , Strong Ill-posedness of the incompressible Euler equation inborderline Sobolev spaces, Invent. Math., 20 (2015) , 97-157. doi: 10.1007/s00222-014-0548-6. | |
J. Bourgain and D. Li , Strong illposedness of the incompressible Euler equation in integer $C^m$ spaces, Geom. Funct. Anal., 25 (2015) , 1-86. doi: 10.1007/s00039-015-0311-1. | |
A. Cheskidov and R. Shvydkoy , Ill-posedness of the basic equations of fluid dynamics in Besov spaces, Proceedings of AMS, 138 (2010) , 1059-1067. doi: 10.1090/S0002-9939-09-10141-7. | |
D. Ebin and J. Marsden , Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970) , 102-163. doi: 10.2307/1970699. | |
T. Elgindi and N. Masmoudi, L∞ Ill-posedness for a class of equations arising in hydrodynamics, preprint, arXiv: 1405.2478v2. | |
A. Grünrock and S. Herr , Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM Journal on Mathematical Analysis, 39 (2008) , 1890-1920. doi: 10.1137/070689139. | |
T. Kato , Nonstationary flows of viscous and ideal fluids in $\mathbb{R}^3$, J. Func. Anal., 9 (1972) , 296-305. doi: 10.1016/0022-1236(72)90003-1. | |
T. Kato , The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975) , 181-205. doi: 10.1007/BF00280740. | |
J. Mattingly and Ya. Sinai , An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations, Commun. Contemp. Math., 1 (1999) , 497-516. doi: 10.1142/S0219199799000183. |