Under consideration here are two-dimensional rotational stratified water flows driven by gravity and surface tension, bounded below by a rigid flat bed and above by a free surface. The distribution of vorticity and of density is piecewise constant-with a jump across the interface separating the fluid of bigger density from the lighter fluid adjacent to the free surface. The main result is that the governing equations for the two-layered rotational stratified flows, as described above, admit a Hamiltonian formulation.
Citation: |
T. B. Benjamin
and P. J. Olver
, Hamiltonian structures, symmetries and conservation laws for water waves, J. Fluid Mech., 125 (1982)
, 137-185.
doi: 10.1017/S0022112082003292.![]() ![]() ![]() |
|
A. Constantin, On the modelling of equatorial waves Geophys. Res. Lett. 39 (2012), L05602.
doi: 10.1029/2012GL051169.![]() ![]() |
|
A. Constantin, An exact solution for equatorially trapped waves J. Geophys. Res. : Oceans 117 (2012), C05029.
doi: 10.1029/2012JC007879.![]() ![]() |
|
A. Constantin
and P. Germain
, Instability of some equatorially trapped waves, J. Geophys. Res.: Oceans, 118 (2013)
, 2802-2810.
doi: 10.1002/jgrc.20219.![]() ![]() |
|
A. Constantin
, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014)
, 781-789.
doi: 10.1175/JPO-D-13-0174.1.![]() ![]() |
|
A. Constantin
and R. S. Johnson
, The dynamics of waves interacting with the Equatorial Undercurrent, Geophysical and Astrophysical Fluid Dynamics, 109 (2015)
, 311-358.
doi: 10.1080/03091929.2015.1066785.![]() ![]() ![]() |
|
A. Constantin
and R. S. Johnson
, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr., 46 (2016)
, 1935-1945.
doi: 10.1175/JPO-D-15-0205.1.![]() ![]() |
|
A. Constantin
, R. Ivanov
and E. Prodanov
, Nearly-Hamiltonian Structure for Water Waves with Constant Vorticity, J. Math. Fluid Mech., 10 (2008)
, 224-237.
doi: 10.1007/s00021-006-0230-x.![]() ![]() ![]() |
|
A. Constantin,
Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis volume 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971873.![]() ![]() ![]() |
|
A. Constantin
and E. Varvaruca
, Steady periodic water waves with constant vorticity: Regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011)
, 33-67.
doi: 10.1007/s00205-010-0314-x.![]() ![]() ![]() |
|
A. Constantin, W. Strauss and E. Varvaruca, Global bifurcation of steady gravity water waves with critical layers, to appear in Acta Mathematica arxiv: 1407.0092.
![]() |
|
A. Constantin and R. Ivanov, A Hamiltonian approach to wave-current interactions in two-layer fluids Physics of Fluids27 (2015), 086603.
doi: 10.1063/1.4929457.![]() ![]() |
|
A. Constantin
, R. Ivanov
and C. I. Martin
, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016)
, 1417-1447.
doi: 10.1007/s00205-016-0990-2.![]() ![]() ![]() |
|
W. Craig
, P. Guyenne
and H. Kalisch
, Hamiltonian long-wave expansions for free surfaces and interfaces, Comm. Pure Appl. Math., 58 (2005)
, 1587-1641.
doi: 10.1002/cpa.20098.![]() ![]() ![]() |
|
M. Giaquinta and S. Hildebrandt. Calculus of Variations I, Springer-Verlag, Berlin, 1996.
![]() ![]() |
|
D. Henry
, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013)
, 18-21.
doi: 10.1016/j.euromechflu.2012.10.001.![]() ![]() ![]() |
|
D. Henry
, Internal equatorial water waves in the $f$-plane, J. Nonl. Math. Phys., 22 (2015)
, 499-506.
doi: 10.1080/14029251.2015.1113046.![]() ![]() ![]() |
|
D. Henry
and H.-C. Hsu
, Instability of internal equatorial waves, J. Differential Equations, 258 (2015)
, 1015-1024.
doi: 10.1016/j.jde.2014.08.019.![]() ![]() ![]() |
|
D. Henry
, Exact equatorial water waves in the $f$ -plane, Nonlinear Anal. Real World Appl., 28 (2016)
, 284-289.
doi: 10.1016/j.nonrwa.2015.10.003.![]() ![]() ![]() |
|
D. Ionescu-Kruse
, Instability of equatorially trapped waves in stratified water, Ann. Mat. Pura Appl., 195 (2016)
, 585-599.
doi: 10.1007/s10231-015-0479-x.![]() ![]() ![]() |
|
V. Kozlov
and N. Kuznetsov
, Dispersion relation for water waves with vorticity and Stokes waves on flows with counter-currents, Arch. Ration. Mech. Anal., 214 (2014)
, 971-1018.
doi: 10.1007/s00205-014-0787-0.![]() ![]() ![]() |
|
D. Lannes, The Water Waves Problem. Mathematical Analysis and Asymptotics, Amer. Math. Soc. , Providence, RI, 2013.
doi: 10.1090/surv/188.![]() ![]() ![]() |
|
P. H. LeBlond and L. A. Mysak, Waves in the Ocean, Elsevier, Amsterdam, 1978.
![]() |
|
C. I. Martin
, Dynamics of the thermocline in the equatorial region of the Pacific Ocean, J. Nonl. Math. Phys., 22 (2015)
, 516-522.
doi: 10.1080/14029251.2015.1113049.![]() ![]() ![]() |
|
C. I. Martin
, Surface tension effects in the equatorial ocean dynamics, Monatshefte für Mathematik, (2015)
, 1-8.
doi: 10.1007/s00605-015-0858-9.![]() ![]() |
|
C. I. Martin
, Hamiltonian structure for rotational capillary waves in stratified flows, J. Differential Equations, 261 (2016)
, 373-395.
doi: 10.1016/j.jde.2016.03.013.![]() ![]() ![]() |
|
C. I. Martin
and B.-V. Matioc
, Existence of Wilton ripples for water waves with constant vorticity and capillary effects, SIAM J. Appl. Math., 73 (2013)
, 1582-1595.
doi: 10.1137/120900290.![]() ![]() ![]() |
|
S.-A. Maslowe
, Critical layers in shear flows, Ann. Rev. Fluid Mech., 18 (1986)
, 405-432.
![]() ![]() |
|
A. -V. Matioc, Steady internal water waves with a critical layer bounded by the wave surface, J. Nonl. Math. Phys. , 19 (2012), 1250008, 21 pp.
doi: 10.1142/S1402925112500088.![]() ![]() ![]() |
|
D. P. Nicholls
, Boundary perturbation methods for water waves, GAMM-Mitt., 30 (2007)
, 44-74.
doi: 10.1002/gamm.200790009.![]() ![]() ![]() |
|
R. Quirchmayr
, On the existence of benthic storms, J. Nonl. Math. Phys., 22 (2015)
, 540-544.
doi: 10.1080/14029251.2015.1113053.![]() ![]() ![]() |
|
G. Stokes
, On the theory of oscillatory waves, Trans. Cambridge Phil. Soc., 8 (1847)
, 441-455.
![]() |
|
C. Swan
, I. P. Cummins
and R. L. James
, An experimental study of two-dimensional surface water waves propagating on depth-varying currents, J. Fluid Mech., 428 (2001)
, 273-304.
![]() |
|
G. Thomas
, Wave-current interactions: an experimental and numerical study, J. Fluid Mech., 216 (1990)
, 303-315.
![]() |
|
E. Wahlén
, A Hamiltonian formulation of water waves with constant vorticity, Lett. Math. Phys., 79 (2007)
, 303-315.
doi: 10.1007/s11005-007-0143-5.![]() ![]() ![]() |
|
E. Wahlén
, Steady water waves with a critical layer, J. Differential Equations, 246 (2009)
, 2468-2483.
doi: 10.1016/j.jde.2008.10.005.![]() ![]() ![]() |
|
J. Wilkening and V. Vasan, Comparison of five methods of computing the Dirichlet-Neumann
operator for the water wave problem, in Nonlinear wave equations: analytic and computational techniques, 175–210, Contemp. Math. , 635, Amer. Math. Soc. , Providence, RI, 2015.
doi: 10.1090/conm/635/12713.![]() ![]() ![]() |
|
V. E. Zakharov
, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968)
, 190-194.
doi: 10.1007/BF00913182.![]() ![]() |