\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Long-time behavior of a fully discrete Lagrangian scheme for a family of fourth order equations

This research was supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics”.

Abstract / Introduction Full Text(HTML) Figure(3) Related Papers Cited by
  • A fully discrete Lagrangian scheme for solving a family of fourth order equations numerically is presented. The discretization is based on the equations' underlying gradient flow structure with respect to the Wasserstein metric, and preserves numerous of their most important structural properties by construction, like conservation of mass and entropy-dissipation.

    In this paper, the long-time behavior of our discretization is analysed: We show that discrete solutions decay exponentially to equilibrium at the same rate as smooth solutions of the original problem. Moreover, we give a proof of convergence of discrete entropy minimizers towards Barenblatt-profiles or Gaussians, respectively, using $Γ$-convergence.

    Mathematics Subject Classification: Primary:65M12, 35G31, 35A15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 2.  Evolution of a discrete solution $u_\Delta$, evaluated at different times $t = 0,0.05,0.1,0.15,0.175,0.25$ (from top left to bottom right). The red line is the corresponding Barenblatt-profile ${{\text{b}}_{\alpha ,\lambda }}$.

    Figure 1.  Left: Numerically observed decay of $H_{\alpha,\lambda}(t)-{\mathbf{H}_{\alpha ,\lambda }^{\min }}$ and $F_{\alpha,\lambda}(t)-{\mathbf{F}_{\alpha ,\lambda }^{\min }}$ along a time period of $t\in[0,0.8]$, using $K=25,50,100,200$, in comparison to the upper bounds $({\mathcal{H}_{\alpha ,\lambda }}(u^0)-{\mathcal{H}_{\alpha ,\lambda }}({{\text{b}}_{\alpha ,\lambda }}))\exp(-2\lambda t)$ and $({\mathcal{F}_{\alpha ,\lambda }}(u^0)-{\mathcal{F}_{\alpha ,\lambda }}({{\text{b}}_{\alpha ,\lambda }}))\exp(-2\lambda t)$, respectively. Right: Convergence of discrete minimizers $u_{\delta }^{\min }$ with a rate of $K^{-1.5}$.

    Figure 3.  Snapshots of the densities $\text{b}_{\alpha ,0}^{*}(t,\cdot)$ (red lines) and $u_\Delta$ (black lines) for the initial condition $\text{b}_{\alpha ,0}^{*}(0,\cdot)$ at times $t=0$ and $t= 0.1\cdot 10^{i}$, $i=0,\ldots,3$, using $K=50$ grid points and the time step size $\tau=10^{-3}$.

  •   L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. doi: 978-3-7643-2428-5.
      L. Ambrosio , S. Lisini  and  G. Savaré , Stability of flows associated to gradient vector fields and convergence of iterated transport maps, Manuscripta Mathematica, 121 (2006) , 1-50.  doi: 10.1007/s00229-006-0003-0.
      J. Becker  and  G. Grün , The thin-film equation: Recent advances and some new perspectives, Journal of Physics: Condensed Matter, 17 (2015) , 291-307.  doi: 10.1088/0953-8984/17/9/002.
      F. Bernis  and  F. Avner , Higher order nonlinear degenerate parabolic equations, Journal of Differential Equations, 83 (1990) , 179-206.  doi: 10.1016/0022-0396(90)90074-Y.
      M. Bertsch , R. Dal Passo , H. Garcke  and  G. Grün , The thin viscous flow equation in higher space dimensions, Journal of Differential Equations, 3 (1998) , 417-440. 
      A. Blanchet , V. Calvez  and  J. A. Carrillo , Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel mode, SIAM Journal on Numerical Analysis, 46 (2008) , 691-721.  doi: 10.1137/070683337.
      P. M. Bleher , J. L. Lebowitz  and  E. R. Speer , Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations, Communications on Pure and Applied Mathematics, 47 (1994) , 923-942.  doi: 10.1002/cpa.3160470702.
      A. Braides, $Γ$ -convergence for Beginners Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001.
      C. J. Budd , G. J. Collins , W. Z. Huang  and  R. D. Russell , Self-similar numerical solutions of the porous-medium equation using moving mesh methods, The Royal Society of London. Philosophical Transactions. Series A. Mathematical, Physical and Engineering Sciences, 357 (1999) , 1047-1077.  doi: 10.1098/rsta.1999.0364.
      M. Bukal , E. Emmrich  and  A. Jüngel , Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation, Numerische Mathematik, 127 (2014) , 365-396.  doi: 10.1007/s00211-013-0588-7.
      M. Burger , J. A. Carrillo  and  M.-T. Wolfram , A mixed finite element method for nonlinear diffusion equations, Kinetic and Related Models, 3 (2010) , 59-83.  doi: 10.3934/krm.2010.3.59.
      M. J. Cáceres , J. A. Carrillo  and  G. Toscani , Long-time behavior for a nonlinear fourth-order parabolic equation, Transactions of the American Mathematical Society, 357 (2005) , 1161-1175.  doi: 10.1090/S0002-9947-04-03528-7.
      E. A. Carlen  and  S. Ulusoy , Asymptotic equipartition and long time behavior of solutions of a thin-film equation, Journal of Differential Equations, 241 (2007) , 279-292.  doi: 10.1016/j.jde.2007.07.005.
      J. A. Carrillo , J. Dolbeault , I. Gentil  and  A. Jüngel , Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 6 (2006) , 1027-1050.  doi: 10.3934/dcdsb.2006.6.1027.
      J. A. Carrillo , A. Jüngel , P. A. Markowich , G. Toscani  and  A. Unterreiter , Entropy dissipation methods for degenerate parabolic problems and generalized {S}obolev inequalities, Monatshefte für Mathematik, 133 (2001) , 1-82.  doi: 10.1007/s006050170032.
      J. A. Carrillo , A. Jüngel  and  S. Tang , Positive entropic schemes for a nonlinear fourth-order parabolic equation, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 3 (2003) , 1-20. 
      J. A. Carrillo  and  J. S. Moll , Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms, SIAM Journal on Scientific Computing, 31 (2009/10) , 4305-4329.  doi: 10.1137/080739574.
      J. A. Carrillo  and  G. Toscani , Long-time asymptotics for strong solutions of the thin film equation, Communications in Mathematical Physics, 225 (2002) , 551-571.  doi: 10.1007/s002200100591.
      J. A. Carrillo and M. -T. Wolfram, A finite element method for nonlinear continuity equations in Lagrangian coordinates, work in progress.
      F. Cavalli  and  G. Naldi , A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation, Kinetic and Related Models, 3 (2010) , 123-142.  doi: 10.3934/krm.2010.3.123.
      R. Dal Passo , H. Garcke  and  G. Grün , On a fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions, SIAM Journal on Mathematical Analysis, 29 (1998) , 321-342.  doi: 10.1137/S0036141096306170.
      J. Denzler  and  R. J. McCann , Nonlinear diffusion from a delocalized source: affine self-similarity, time reversal, & nonradial focusing geometries, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, 25 (2008) , 865-888.  doi: 10.1016/j.anihpc.2007.05.002.
      B. Derrida , J. L. Lebowitz , E. R. Speer  and  H. Spohn , Dynamics of an anchored Toom interface, Journal of Physics. A. Mathematical and General, 24 (1991) , 4805-4834.  doi: 10.1088/0305-4470/24/20/015.
      B. Derrida , J. L. Lebowitz , E. R. Speer  and  H. Spohn , Fluctuations of a stationary nonequilibrium interface, Physical Review Letters, 67 (1991) , 165-168.  doi: 10.1103/PhysRevLett.67.165.
      B. Düring , D. Matthes  and  J. P. Milišić , A gradient flow scheme for nonlinear fourth order equations, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 14 (2010) , 935-959.  doi: 10.3934/dcdsb.2010.14.935.
      L. C. Evans , O. Savin  and  W. Gangbo , Diffeomorphisms and nonlinear heat flows, SIAM Journal on Mathematical Analysis, 37 (2005) , 737-751.  doi: 10.1137/04061386X.
      J. Fischer , Uniqueness of solutions of the Derrida-Lebowitz-Speer-Spohn equation and quantum drift-diffusion models, SIAM Journal on Mathematical Analysis, 38 (2013) , 2004-2047.  doi: 10.1080/03605302.2013.823548.
      L. Giacomelli  and  F. Otto , Variational formulation for the lubrication approximation of the Hele-Shaw flow, Calculus of Variations and Partial Differential Equations, 13 (2001) , 377-403.  doi: 10.1007/s005260000077.
      U. Gianazza , G. Savaré  and  G. Toscani , The {W}asserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Archive for Rational Mechanics and Analysis, 194 (2009) , 133-220.  doi: 10.1007/s00205-008-0186-5.
      E. Giusti, Minimal Surfaces and Functions of Bounded Variation Monographs in Mathematics, Birkhäuser Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9486-0.
      L. Gosse  and  G. Toscani , Identification of asymptotic decay to self-similarity for one-dimensional filtration equations, SIAM Journal on Numerical Analysis, 43 (2006) , 2590-2606.  doi: 10.1137/040608672.
      L. Gosse  and  G. Toscani , Lagrangian numerical approximations to one-dimensional convolution-diffusion equations, SIAM Journal on Scientific Computing, 28 (2006) , 1203-1227.  doi: 10.1137/050628015.
      G. Grün , Droplet spreading under weak slippage-existence for the Cauchy problem, Communications in Partial Differential Equations, 29 (2004) , 1697-1744.  doi: 10.1081/PDE-200040193.
      M. P. Gualdani , A. Jüngel  and  G. Toscani , A nonlinear fourth-order parabolic equation with nonhomogeneous boundary conditions, SIAM Journal on Mathematical Analysis, 37 (2006) , 1761-1779.  doi: 10.1137/S0036141004444615.
      R. Jordan , D. Kinderlehrer  and  F. Otto , The variational formulation of the Fokker-Planck equation, SIAM Journal on Mathematical Analysis, 29 (1998) , 1-17.  doi: 10.1137/S0036141096303359.
      A. Jüngel  and  D. Matthes , An algorithmic construction of entropies in higher-order nonlinear PDEs, Nonlinearity, 19 (2006) , 633-659.  doi: 10.1088/0951-7715/19/3/006.
      A. Jüngel  and  D. Matthes , The Derrida-Lebowitz-Speer-Spohn equation: Existence, nonuniqueness, and decay rates of the solutions, SIAM Journal on Mathematical Analysis, 39 (2008) , 1996-2015.  doi: 10.1137/060676878.
      A. Jüngel  and  R. Pinnau , Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM Journal on Mathematical Analysis, 32 (2000) , 760-777.  doi: 10.1137/S0036141099360269.
      A. Jüngel  and  R. Pinnau , A positivity-preserving numerical scheme for a nonlinear fourth order parabolic system, SIAM Journal on Numerical Analysis, 39 (2001) , 385-406.  doi: 10.1137/S0036142900369362.
      A. Jüngel  and  G. Toscani , Exponential time decay of solutions to a nonlinear fourth-order parabolic equation, Journal of Applied Mathematics and Physics, 54 (2003) , 377-386.  doi: 10.1007/s00033-003-1026-y.
      A. Jüngel  and  I. Violet , First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 8 (2007) , 861-877.  doi: 10.3934/dcdsb.2007.8.861.
      D. Kinderlehrer  and  N. J. Walkington , Approximation of parabolic equations using the Wasserstein metric, M2AN. Mathematical Modelling and Numerical Analysis, 33 (1999) , 837-852.  doi: 10.1051/m2an:1999166.
      R. C. MacCamy  and  E. Socolovsky , A numerical procedure for the porous media equation, Computers & Mathematics with Applications. An International Journal, 11 (1985) , 315-319.  doi: 10.1016/0898-1221(85)90156-7.
      D. Matthes , R. J. McCann  and  G. Savaré , A family of nonlinear fourth order equations of gradient flow type, Communications in Partial Differential Equations, 34 (2009) , 1352-1397.  doi: 10.1080/03605300903296256.
      D. Matthes  and  H. Osberger , Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM. Mathematical Modelling and Numerical Analysis, 48 (2014) , 697-726.  doi: 10.1051/m2an/2013126.
      D. Matthes  and  H. Osberger , A convergent Lagrangian discretization for a nonlinear fourth-order equation, Foundations of Computational Mathematics, 17 (2015) , 1-54.  doi: 10.1007/s10208-015-9284-6.
      A. Oron , S. H. Davis  and  S. G. Bankoff , Long-scale evolution of thin liquid films, American Physical Society, 69 (1997) , 931-980.  doi: 10.1103/RevModPhys.69.931.
      G. Russo , Deterministic diffusion of particles, Communications on Pure and Applied Mathematics, 43 (1990) , 697-733.  doi: 10.1002/cpa.3160430602.
      C. Villani, Topics in Optimal Transportation American Mathematical Society, Providence, RI, 2003. doi: 10.1090/gsm/058.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(2151) PDF downloads(207) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return