We show that the initial value problem associated to the dispersive generalized Benjamin-Ono-Zakharov-Kuznetsov equation
$ u_t-D_x^α u_{x} + u_{xyy} = uu_x,\,\,\,\,\,\, (t,x,y)∈\mathbb{R}^3, 1≤ α≤ 2,$
is locally well-posed in the spaces $E^s$, $s > \frac{2}{\alpha } - \frac{3}{4}$, endowed with the norm $\|f{{\|}_{{{E}^{s}}}}=\|{{\left\langle {{\left| \xi \right|}^{\alpha }}+{{\mu }^{2}} \right\rangle }^{s}}\hat{f}{{\|}_{{{L}^{2}}({{\mathbb{R}}^{2}})}}.$ As a consequence, we get the global well-posedness in the energy space$E^{1/2}$ as soon as $α>\frac 85$. The proof is based on the approach of the short time Bourgain spaces developed by Ionescu, Kenig and Tataru [
Citation: |
J. L. Bona
and R. Smith
, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond., Ser. A, 278 (1975)
, 555-601.
doi: 10.1098/rsta.1975.0035.![]() ![]() ![]() |
|
A. Carbery
, C. E. Kenig
and S. N. Ziesler
, Restriction for homogeneous polynomial surfaces in R3, Trans. Amer. Math. Soc., 365 (2013)
, 2367-2407.
doi: 10.1090/S0002-9947-2012-05685-6.![]() ![]() ![]() |
|
A. Cunha
and A. Pastor
, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces, J. Math. Anal. Appl., 417 (2014)
, 660-693.
doi: 10.1016/j.jmaa.2014.03.056.![]() ![]() ![]() |
|
A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differential Equations, 261 (2016), 2041–2067, arXiv: 1601.02803.
doi: 10.1016/j.jde.2016.04.022.![]() ![]() ![]() |
|
A. Esfahani
and A. Pastor
, Ill-posseness results for the (generalized) Benjamin-Ono-ZakharovKuznetsov equation, Proc. Amer. Math. Soc., 139 (2011)
, 943-956.
doi: 10.1090/S0002-9939-2010-10532-4.![]() ![]() ![]() |
|
A. V. Faminskii
, The Cauchy problem for the Zakharov-Kuznetsov equation, Differential Equations, 31 (1995)
, 1002-1012.
![]() ![]() |
|
A. Grünrock
and S. Herr
, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 34 (2014)
, 2061-2068.
doi: 10.3934/dcds.2014.34.2061.![]() ![]() ![]() |
|
Z. Guo
, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, J. Differential Equations, 252 (2012)
, 2053-2084.
doi: 10.1016/j.jde.2011.10.012.![]() ![]() ![]() |
|
S. Herr
, A. D. Ionescu
, C. E. Kenig
and H. Koch
, A para-differential renormalization technique for nonlinear dispersive equations, Comm. Partial Differential Equations, 35 (2010)
, 1827-1875.
doi: 10.1080/03605302.2010.487232.![]() ![]() ![]() |
|
A. D. Ionescu
, C. E. Kenig
and D. Tataru
, Global well-posedness of the KP-I initial-value problem in the energy space, Invent. Math., 173 (2008)
, 265-304.
doi: 10.1007/s00222-008-0115-0.![]() ![]() ![]() |
|
R. J. Iorio
, On the cauchy problem for the Benjamin-Ono equation, C.P.D.E., 11 (1986)
, 1031-1081.
doi: 10.1080/03605308608820456.![]() ![]() ![]() |
|
M. C. Jorge, G. Cruz-Pacheco, L. Mier-y-Teran-Romero and N. F. Smyth, Evolution of twodimensional lump nanosolitons for the Zakharov-Kuznetsov and electromigration equations,
Chaos 15 (2005), 037104, 13pp.
doi: 10.1063/1.1877892.![]() ![]() ![]() |
|
C. E. Kenig
and D. Pilod
, Well-posedness for the fifth-order KdV equation in the energy space, Trans. Amer. Math. Soc., 367 (2015)
, 2551-2612.
doi: 10.1090/S0002-9947-2014-05982-5.![]() ![]() ![]() |
|
C.E. Kenig
, G. Ponce
and L. Vega
, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991)
, 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0.![]() ![]() ![]() |
|
H. Koch
and N. Tzvetkov
, Local well-posedness of the Benjamin-Ono equation in $ H^s(\mathbb{R})$, I.M.R.N., 26 (2003)
, 1449-1464.
doi: 10.1155/S1073792803211260.![]() ![]() ![]() |
|
D. Lannes
, F. Linares
and J.-C. Saut
, The Cauchy Problem for the Euler-Poisson System and Derivation of the Zakharov-Kuznetsov Equation, Prog. Nonlinear Differ. Equ. Appl., 84 (2013)
, 181-213.
doi: 10.1007/978-1-4614-6348-1_10.![]() ![]() ![]() |
|
J. C. Latorre, A. A. Minzoni, N. F. Smyth and C. A. Vargas, Evolution of Benjamin-Ono solitons in the presence of weak Zakharov-Kutznetsov lateral dispersion,
Chaos 16 (2006), 043103, 10pp.
doi: 10.1063/1.2355555.![]() ![]() ![]() |
|
L. Molinet
and D. Pilod
, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015)
, 347-371.
doi: 10.1016/j.anihpc.2013.12.003.![]() ![]() ![]() |
|
L. Molinet
, J. C. Saut
and N. Tzvetkov
, Ill-posedness issues for the Benjamin-Ono equation and related equations, SIAM J. Math. Anal., 33 (2001)
, 982-988.
doi: 10.1137/S0036141001385307.![]() ![]() ![]() |
|
L. Molinet
and S. Vento
, Improvement of the energy method for strongly non resonant dispersive equations and applications, Anal. PDE, 8 (2015)
, 1455-1495.
doi: 10.2140/apde.2015.8.1455.![]() ![]() ![]() |
|
F. Ribaud
and S. Vento
, Well-posedness results for the three-dimensional Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 44 (2012)
, 2289-2304.
doi: 10.1137/110850566.![]() ![]() ![]() |
|
T. Tao
, Global well-posedness of the Benjamin-Ono equation in H1($\mathbb{R}$),, J. Hyp. Diff. Eq., 1 (2004)
, 17-49.
doi: 10.1142/S0219891604000032.![]() ![]() ![]() |
|
V. E. Zakharov
and E. A. Kuznetsov
, On three dimensional solitons, Sov. Phys. JETP., 39 (1974)
, 285-286.
![]() |