January  2017, 37(1): 505-543. doi: 10.3934/dcds.2017021

Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis

Department of Mathematics, Southwestern University of Finance and Economics, 555 Liutai Ave, Wenjiang, Chengdu, Sichuan 611130, China

*Corresponding author

currently at Department of Mathematics, University of Central Florida, USA

Received  December 2015 Revised  August 2016 Published  November 2016

Fund Project: QW is supported by NSF-China (Grant No. 11501460) and the Project (No.15ZA0382) from Department of Education, Sichuan, China

This paper concerns pattern formation in a class of reaction-advection-diffusion systems modeling the population dynamics of two predators and one prey. We consider the biological situation that both predators forage along the population density gradient of the preys which can defend themselves as a group. We prove the global existence and uniform boundedness of positive classical solutions for the fully parabolic system over a bounded domain with space dimension $ N=1,2 $ and for the parabolic-parabolic-elliptic system over higher space dimensions. Linearized stability analysis shows that prey-taxis stabilizes the positive constant equilibrium if there is no group defense while it destabilizes the equilibrium otherwise. Then we obtain stationary and time-periodic nontrivial solutions of the system that bifurcate from the positive constant equilibrium. Moreover, the stability of these solutions is also analyzed in detail which provides a wave mode selection mechanism of nontrivial patterns for this strongly coupled system. Finally, we perform numerical simulations to illustrate and support our theoretical results.

Citation: Ke Wang, Qi Wang, Feng Yu. Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 505-543. doi: 10.3934/dcds.2017021
References:
[1]

P. Abrams and H. Matsuda, Effects of adaptive predatory and anti-predator behaviour in a two-prey-one-predator system, Evolutionary Ecology, 7 (1993), 312-326.  doi: 10.1007/BF01237749.  Google Scholar

[2]

B. E. AinsebaM. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086-2105.  doi: 10.1016/j.nonrwa.2007.06.017.  Google Scholar

[3]

N. Alikakos, $ L^p $ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.  Google Scholar

[4]

H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75.   Google Scholar

[5]

H. Amann, Hopf bifurcation in quasilinear reaction-diffusion systems, Delay Differential Equations and Dynamical Systems, Lecture Notes in Mathematics, 1475 (1991), 53-63.  doi: 10.1007/BFb0083479.  Google Scholar

[6]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, differential operators and nonlinear Analysis, Teubner, Stuttgart, Leipzig, 133 (1993), 9-126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[7]

A. ChakrabortyM. SinghD. Lucy and P. Ridland, Predator-prey model with prey-taxis and diffusion, Math. Comput. Modelling, 46 (2007), 482-498.  doi: 10.1016/j.mcm.2006.10.010.  Google Scholar

[8]

A. ChertockA. KurganovX. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.  doi: 10.3934/krm.2012.5.51.  Google Scholar

[9]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[10]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.  doi: 10.1007/BF00282325.  Google Scholar

[11]

M. G. Crandall and P. H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions, Arch. Rational Mech. Anal., 67 (1977), 53-72.  doi: 10.1007/BF00280827.  Google Scholar

[12]

T. Czaran, Spatiotemporal Models of Population and Community Dynamics, Chapman and Hall, London, 1998. Google Scholar

[13]

R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[14]

D. Grünbaum, Advection-diffusion equations for generalized tactic searching behaviours, J. Math. Biol., 38 (1999), 169-194.  doi: 10.1007/s002850050145.  Google Scholar

[15]

W. D. Hamilton, Geometry for the selfish herd, J. Theoret. Biol., 31 (1971), 295-311.  doi: 10.1016/0022-5193(71)90189-5.  Google Scholar

[16]

X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77.  doi: 10.1016/j.aml.2015.04.017.  Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag-Berlin-New York, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[18]

T. Hillen and K. J. Painter, A user's guidence to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[19]

D. Horstmann, 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅰ, Jahresber DMV, 105 (2003), 103-165.   Google Scholar

[20]

D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270.  doi: 10.1007/s00332-010-9082-x.  Google Scholar

[21]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[22]

L. Hsiao and P. de Mottoni, Persistence in reacting-diffusing systems: Interaction of two predators and one prey, Nonlinear Anal., 11 (1987), 877-891.  doi: 10.1016/0362-546X(87)90058-7.  Google Scholar

[23]

L. Jin, Q. Wang and Z. Zhang, Qualitative Studies of Advective Competition System with Beddington-DeAngelis Functional Response, preprint, http://arxiv.org/abs/1412.3371 Google Scholar

[24]

D. D. Joseph and D. Nield, Stability of bifurcating time-periodic and steady solutions of arbitrary amplitude, Arch. Rational Mech. Anal., 58 (1975), 369-380.  doi: 10.1007/BF00250296.  Google Scholar

[25]

D. D. Joseph and D. H. Sattinger, Bifurcating time periodic solutions and their stability, Arch. Rational Mech. Anal., 45 (1972), 75-109.  doi: 10.1007/BF00253039.  Google Scholar

[26]

P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.  Google Scholar

[27]

T. Kato, Functional Analysis, Springer Classics in Mathematics, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[28]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[29]

K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 293-314.  doi: 10.1016/j.jde.2003.10.016.  Google Scholar

[30]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.  doi: 10.1016/j.jde.2003.08.003.  Google Scholar

[31]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, 1968,648 pages.  Google Scholar

[32]

J. M. LeeT. Hilllen and M. A. Lewis, Continuous traveling waves for prey-taxis, Bull. Math. Biol., 70 (2008), 654-676.  doi: 10.1007/s11538-007-9271-4.  Google Scholar

[33]

J. M. LeeT. Hilllen and M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.  doi: 10.1080/17513750802716112.  Google Scholar

[34]

C. LiX. Wang and Y. Shao, Steady states of a predator-prey model with prey-taxis, Nonlinear Anal., 97 (2014), 155-168.  doi: 10.1016/j.na.2013.11.022.  Google Scholar

[35]

J.-J. LinW. WangC. Zhao and T.-H. Yang, Global dynamics and traveling wave solutions of two predators-one prey models, Discrete Contin. Dyn. Syst-Series B, 20 (2015), 1135-1154.  doi: 10.3934/dcdsb.2015.20.1135.  Google Scholar

[36]

P. LiuJ. Shi and Z.-A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst-Series B, 18 (2013), 2597-2625.  doi: 10.3934/dcdsb.2013.18.2597.  Google Scholar

[37]

I. LoladzeY. KuangJ.-J. Elser and W.-F. Fagan, Competition and stoichiometry: Coexistence of two predators on one prey, Theoret. Pop. Biol., 65 (2004), 1-15.  doi: 10.1016/S0040-5809(03)00105-9.  Google Scholar

[38]

Z. Maciej GliwiczP. MaszczykJ. Jabłoński and D. Wrzosek, Patch exploitation by planktivorous fish and the concept of aggregation as an antipredation defense in zooplankton, Limnology and Oceanography, 58 (2013), 1621-1639.  doi: 10.4319/lo.2013.58.5.1621.  Google Scholar

[39]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.  doi: 10.1007/BF00276035.  Google Scholar

[40]

J. D. Murray, Mathematical Biology, Springer, New York, 1993. doi: 10.1007/b98869.  Google Scholar

[41]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.  doi: 10.1155/AAA/2006/23061.  Google Scholar

[42]

W. Nagata and S.-M. Merchant, Wave train selection behind invasion fronts in reaction-diffusion predator-prey models, Phys. D, 239 (2010), 1670-1680.  doi: 10.1016/j.physd.2010.04.014.  Google Scholar

[43]

K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-diffusion, Adv. Differential Equations, 1 (1996), 1099-1122.   Google Scholar

[44]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems, Modern Perspectives 2nd Edition, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4978-6.  Google Scholar

[45]

P. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200 (2004), 245-273.  doi: 10.1016/j.jde.2004.01.004.  Google Scholar

[46]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[47]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[48]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst., 9 (2003), 1049-1061.  doi: 10.3934/dcds.2003.9.1049.  Google Scholar

[49]

N. SapoukhinaY. Tyutyunov and R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, The American Naturalist, 162 (2003), 61-76.  doi: 10.1086/375297.  Google Scholar

[50]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[51]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[52]

G. Simonett, Center manifolds for quasilinear reaction-diffusion systems, Differential Integral Equations, 8 (1995), 753-796.   Google Scholar

[53]

Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056-2064.  doi: 10.1016/j.nonrwa.2009.05.005.  Google Scholar

[54]

Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.  Google Scholar

[55]

T. Tona and N. Hieu, Dynamics of species in a model with two predators and one prey, Nonlinear Anal., 74 (2011), 4868-4881.  doi: 10.1016/j.na.2011.04.061.  Google Scholar

[56]

P. Turchin, Quantitative Analysis of Movement, Sinauer, Sunderland, Mass. , 1998. Google Scholar

[57]

Q. WangC. Gai and J. Yan, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015), 1239-1284.  doi: 10.3934/dcds.2015.35.1239.  Google Scholar

[58]

Q. WangY. Song and L. Shao, Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, J. Nonlinear Sci., (2016), 1-27.  doi: 10.1007/s00332-016-9326-5.  Google Scholar

[59]

Q. Wang, J. Yang and L. Zhang, Time periodic and stable patterns of a two-competing-species keller-segel chemotaxis model: effect of cellular growth, preprint, http://arxiv.org/abs/1505.06463. Google Scholar

[60]

Q. WangL. ZhangJ. Yang and J. Hu, Global existence and steady states of a two competing species Keller-Segel chemotaxis model, Kinet. Relat. Models, 8 (2015), 777-807.  doi: 10.3934/krm.2015.8.777.  Google Scholar

[61]

X. WangW. Wang and G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 38 (2015), 431-443.  doi: 10.1002/mma.3079.  Google Scholar

[62]

X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.  doi: 10.1007/s00285-012-0533-x.  Google Scholar

[63]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[64]

D. Xiao and S. Ruan, Codimension two bifurcations in a predator-prey system with group defense, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 2123-2131.  doi: 10.1142/S021812740100336X.  Google Scholar

[65]

J. ZhouC.-G. Kim and J. Shi, Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type Ⅱ functional response and cross-diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 3875-3899.  doi: 10.3934/dcds.2014.34.3875.  Google Scholar

show all references

References:
[1]

P. Abrams and H. Matsuda, Effects of adaptive predatory and anti-predator behaviour in a two-prey-one-predator system, Evolutionary Ecology, 7 (1993), 312-326.  doi: 10.1007/BF01237749.  Google Scholar

[2]

B. E. AinsebaM. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086-2105.  doi: 10.1016/j.nonrwa.2007.06.017.  Google Scholar

[3]

N. Alikakos, $ L^p $ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.  Google Scholar

[4]

H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75.   Google Scholar

[5]

H. Amann, Hopf bifurcation in quasilinear reaction-diffusion systems, Delay Differential Equations and Dynamical Systems, Lecture Notes in Mathematics, 1475 (1991), 53-63.  doi: 10.1007/BFb0083479.  Google Scholar

[6]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, differential operators and nonlinear Analysis, Teubner, Stuttgart, Leipzig, 133 (1993), 9-126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[7]

A. ChakrabortyM. SinghD. Lucy and P. Ridland, Predator-prey model with prey-taxis and diffusion, Math. Comput. Modelling, 46 (2007), 482-498.  doi: 10.1016/j.mcm.2006.10.010.  Google Scholar

[8]

A. ChertockA. KurganovX. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.  doi: 10.3934/krm.2012.5.51.  Google Scholar

[9]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[10]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.  doi: 10.1007/BF00282325.  Google Scholar

[11]

M. G. Crandall and P. H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions, Arch. Rational Mech. Anal., 67 (1977), 53-72.  doi: 10.1007/BF00280827.  Google Scholar

[12]

T. Czaran, Spatiotemporal Models of Population and Community Dynamics, Chapman and Hall, London, 1998. Google Scholar

[13]

R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[14]

D. Grünbaum, Advection-diffusion equations for generalized tactic searching behaviours, J. Math. Biol., 38 (1999), 169-194.  doi: 10.1007/s002850050145.  Google Scholar

[15]

W. D. Hamilton, Geometry for the selfish herd, J. Theoret. Biol., 31 (1971), 295-311.  doi: 10.1016/0022-5193(71)90189-5.  Google Scholar

[16]

X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77.  doi: 10.1016/j.aml.2015.04.017.  Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag-Berlin-New York, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[18]

T. Hillen and K. J. Painter, A user's guidence to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[19]

D. Horstmann, 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅰ, Jahresber DMV, 105 (2003), 103-165.   Google Scholar

[20]

D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270.  doi: 10.1007/s00332-010-9082-x.  Google Scholar

[21]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[22]

L. Hsiao and P. de Mottoni, Persistence in reacting-diffusing systems: Interaction of two predators and one prey, Nonlinear Anal., 11 (1987), 877-891.  doi: 10.1016/0362-546X(87)90058-7.  Google Scholar

[23]

L. Jin, Q. Wang and Z. Zhang, Qualitative Studies of Advective Competition System with Beddington-DeAngelis Functional Response, preprint, http://arxiv.org/abs/1412.3371 Google Scholar

[24]

D. D. Joseph and D. Nield, Stability of bifurcating time-periodic and steady solutions of arbitrary amplitude, Arch. Rational Mech. Anal., 58 (1975), 369-380.  doi: 10.1007/BF00250296.  Google Scholar

[25]

D. D. Joseph and D. H. Sattinger, Bifurcating time periodic solutions and their stability, Arch. Rational Mech. Anal., 45 (1972), 75-109.  doi: 10.1007/BF00253039.  Google Scholar

[26]

P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.  Google Scholar

[27]

T. Kato, Functional Analysis, Springer Classics in Mathematics, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[28]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[29]

K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 293-314.  doi: 10.1016/j.jde.2003.10.016.  Google Scholar

[30]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.  doi: 10.1016/j.jde.2003.08.003.  Google Scholar

[31]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, 1968,648 pages.  Google Scholar

[32]

J. M. LeeT. Hilllen and M. A. Lewis, Continuous traveling waves for prey-taxis, Bull. Math. Biol., 70 (2008), 654-676.  doi: 10.1007/s11538-007-9271-4.  Google Scholar

[33]

J. M. LeeT. Hilllen and M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.  doi: 10.1080/17513750802716112.  Google Scholar

[34]

C. LiX. Wang and Y. Shao, Steady states of a predator-prey model with prey-taxis, Nonlinear Anal., 97 (2014), 155-168.  doi: 10.1016/j.na.2013.11.022.  Google Scholar

[35]

J.-J. LinW. WangC. Zhao and T.-H. Yang, Global dynamics and traveling wave solutions of two predators-one prey models, Discrete Contin. Dyn. Syst-Series B, 20 (2015), 1135-1154.  doi: 10.3934/dcdsb.2015.20.1135.  Google Scholar

[36]

P. LiuJ. Shi and Z.-A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst-Series B, 18 (2013), 2597-2625.  doi: 10.3934/dcdsb.2013.18.2597.  Google Scholar

[37]

I. LoladzeY. KuangJ.-J. Elser and W.-F. Fagan, Competition and stoichiometry: Coexistence of two predators on one prey, Theoret. Pop. Biol., 65 (2004), 1-15.  doi: 10.1016/S0040-5809(03)00105-9.  Google Scholar

[38]

Z. Maciej GliwiczP. MaszczykJ. Jabłoński and D. Wrzosek, Patch exploitation by planktivorous fish and the concept of aggregation as an antipredation defense in zooplankton, Limnology and Oceanography, 58 (2013), 1621-1639.  doi: 10.4319/lo.2013.58.5.1621.  Google Scholar

[39]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.  doi: 10.1007/BF00276035.  Google Scholar

[40]

J. D. Murray, Mathematical Biology, Springer, New York, 1993. doi: 10.1007/b98869.  Google Scholar

[41]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.  doi: 10.1155/AAA/2006/23061.  Google Scholar

[42]

W. Nagata and S.-M. Merchant, Wave train selection behind invasion fronts in reaction-diffusion predator-prey models, Phys. D, 239 (2010), 1670-1680.  doi: 10.1016/j.physd.2010.04.014.  Google Scholar

[43]

K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-diffusion, Adv. Differential Equations, 1 (1996), 1099-1122.   Google Scholar

[44]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems, Modern Perspectives 2nd Edition, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4978-6.  Google Scholar

[45]

P. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200 (2004), 245-273.  doi: 10.1016/j.jde.2004.01.004.  Google Scholar

[46]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[47]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[48]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst., 9 (2003), 1049-1061.  doi: 10.3934/dcds.2003.9.1049.  Google Scholar

[49]

N. SapoukhinaY. Tyutyunov and R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, The American Naturalist, 162 (2003), 61-76.  doi: 10.1086/375297.  Google Scholar

[50]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[51]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[52]

G. Simonett, Center manifolds for quasilinear reaction-diffusion systems, Differential Integral Equations, 8 (1995), 753-796.   Google Scholar

[53]

Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056-2064.  doi: 10.1016/j.nonrwa.2009.05.005.  Google Scholar

[54]

Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.  Google Scholar

[55]

T. Tona and N. Hieu, Dynamics of species in a model with two predators and one prey, Nonlinear Anal., 74 (2011), 4868-4881.  doi: 10.1016/j.na.2011.04.061.  Google Scholar

[56]

P. Turchin, Quantitative Analysis of Movement, Sinauer, Sunderland, Mass. , 1998. Google Scholar

[57]

Q. WangC. Gai and J. Yan, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015), 1239-1284.  doi: 10.3934/dcds.2015.35.1239.  Google Scholar

[58]

Q. WangY. Song and L. Shao, Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, J. Nonlinear Sci., (2016), 1-27.  doi: 10.1007/s00332-016-9326-5.  Google Scholar

[59]

Q. Wang, J. Yang and L. Zhang, Time periodic and stable patterns of a two-competing-species keller-segel chemotaxis model: effect of cellular growth, preprint, http://arxiv.org/abs/1505.06463. Google Scholar

[60]

Q. WangL. ZhangJ. Yang and J. Hu, Global existence and steady states of a two competing species Keller-Segel chemotaxis model, Kinet. Relat. Models, 8 (2015), 777-807.  doi: 10.3934/krm.2015.8.777.  Google Scholar

[61]

X. WangW. Wang and G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 38 (2015), 431-443.  doi: 10.1002/mma.3079.  Google Scholar

[62]

X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.  doi: 10.1007/s00285-012-0533-x.  Google Scholar

[63]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[64]

D. Xiao and S. Ruan, Codimension two bifurcations in a predator-prey system with group defense, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 2123-2131.  doi: 10.1142/S021812740100336X.  Google Scholar

[65]

J. ZhouC.-G. Kim and J. Shi, Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type Ⅱ functional response and cross-diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 3875-3899.  doi: 10.3934/dcds.2014.34.3875.  Google Scholar

Figure 1.  Pitch-fork bifurcation diagrams when case (ⅰ) in Theorem 4.3 occurs. The stable bifurcation curve is plotted in solid line and the unstable bifurcation curve is plotted in dashed line. The branch $\Gamma_{k_0}(s)$ around $(\bar u, \bar v, \bar w, \chi^S_{k_0})$ is stable if it turns to the right and is unstable if it turns to the left, while $\Gamma_{k}(s)$ around $(\bar u, \bar v, \bar w, \chi^S_{k})$ is always unstable if $k\neq k_0$
Figure 2.  Formation of stationary patterns of (3.1) over $\Omega=(0, 7)$. System parameters in all the graphes are taken to be the same as in Table 1 except that $\chi=8$, which is larger than $\chi^S_{k_0}\approx6.05$ given in Table 1. Initial data are $(u_0, v_0, w_0)=(\bar u, \bar v, \bar w)+(0.01, 0.01, 0.01)\cos \pi x$, while the stable pattern has wave mode $\cos \frac{6\pi x}{7}$. These graphes support our stability analysis of the bifurcating solutions
Figure 3.  Formation of stationary patterns of (3.1) over intervals with lengthes $L=9$, $11$, $13$ and $15$. System parameters here are taken to be the same as those in Table 1 except that $\chi=8$, which is slightly larger than $\chi^S_{k_0}\approx6.04$ given in Table 2. Initial data are $(u_0, v_0, w_0)=(\bar u, \bar v, \bar w)+(0.01, 0.01, 0.01)\cos \pi x$. These graphes support our stability analysis of the bifurcating solutions and indicate that large intervals support more aggregates than small intervals
Figure 4.  Formation of time-periodic spatial patterns of (3.1) over $\Omega=(0, 7)$. System parameters in all the graphes are taken to be the same as in Table 3 except that $\chi=120$, which is slightly larger than $\chi^H_{k_0}\approx 92.57$ given in Table 3. Initial data are $(u_0, v_0, w_0)=(\bar u, \bar v, \bar w)+(0.01, 0.01, 0.01)\cos \pi x$, however the stable oscillating patterns have spatial profile $\cos\frac{3\pi x}{7}$, which emerge periodically. These plots support our stability analysis in Section 5
Figure 5.  Formation of time-periodic spatial patterns of (3.1) over intervals with lengthes $L=9$, $11$, $13$ and $15$ respectively. System parameters in all the graphes are taken to be the same as in Table 3 except that $\chi=120$, which is slightly larger than $\chi^H_{k_0}$ given in Table 4. Initial data are $(u_0, v_0, w_0)=(\bar u, \bar v, \bar w)+(0.01, 0.01, 0.01)\cos \pi x$. These graphes support our stability analysis of the bifurcating solutions
Figure 6.  Formation and development of boundary spike through wave propagation. Initial data are $(u_0, v_0, w_0)=(\bar u, \bar v, \bar w)+(0.01, 0.01, 0.01)\cos \pi x$. Prey-taxis rate $\chi=3000$ which is far away from the critical bifurcation value $\chi_0=956.79$.
Figure 7.  Pattern formations in (3.1) due to the effect of large prey-taxis rate $\chi$. Various interesting and complex spatial-temporal dynamics are observed in this system
Table 1.  Values of $\chi^S_k$ in (3.4) and $\chi^H_k$ in (3.5) for $L=7$. The system parameters are chosen to be $d_1=d_3=0.1$, $d_2=2$, $\alpha_1=\beta_1=\beta_2=0.5$, $\alpha_2=2$, $\alpha_3=1$ and $\beta_{31}=\beta_{32}=0.1$, $\xi=0.5$. The sensitivity function is $\phi(w)=w(0.1-w)$ which models the group defense of the preys when population density surpasses 0.1. We see that $\min_{k\in\mathbb N^+}\{\chi^S_k, \chi^H_k\}=\chi^S_6$. Therefore $(\bar u, \bar v, \bar w)$ loses its stability to the stable wave mode $\cos \frac{6\pi x}{7}$. This is numerically verified in Figure 2
$k$12345 6789
$\chi^S_{k}$66.9818.9810.307.496.416.056.096.366.80
$\chi^H_{k}$1204.20550.84504.20575.80705.50878.481089.701336.901619.19
$k$12345 6789
$\chi^S_{k}$66.9818.9810.307.496.416.056.096.366.80
$\chi^H_{k}$1204.20550.84504.20575.80705.50878.481089.701336.901619.19
Table 2.  Stable wave mode numbers and the corresponding bifurcation values $\chi_0$ for different interval lengthes. System parameters are chosen to be the same as those in Table 1. We see that the threshold value $\chi_0$ is always achieved at the steady state bifurcation point $\chi^S_{k_0}$. This table also indicates that larger intervals support higher wave modes
Interval length $L$12345678
$k_0$12345567
$\chi_0=\chi^S_{k_0}$6.096.096.096.096.096.086.056.04
Interval length $L$910111213141516
$k_0$89101112131415
$\chi_0=\chi^S_{k_0}$6.046.036.046.046.046.046.046.04
Interval length $L$12345678
$k_0$12345567
$\chi_0=\chi^S_{k_0}$6.096.096.096.096.096.086.056.04
Interval length $L$910111213141516
$k_0$89101112131415
$\chi_0=\chi^S_{k_0}$6.046.036.046.046.046.046.046.04
Table 3.  Values of $\chi^S_k$ in (3.4) and $\chi^H_k$ in (3.5) for $L=7$. System parameters are $d_1=d_3=1$, $d_2=0.01$, $\alpha_1=0.02$, $\alpha_2=0.04$, $\alpha_3=8$ and $\beta_1=0.05$, $\beta_2=\beta_{31}=\beta_{32}=0.5$, while the sensitivity function is $\phi(w)=w(0.2-w)$. We see that $\min_{k\in\mathbb N^+}\{\chi^S_k, \chi^H_k\}=\chi^H_3$. Therefore $(\bar u, \bar v, \bar w)$ loses its stability to the time-periodic solutions with wave mode $\cos \frac{3\pi x}{7}$. This is numerically verified in Figure 4
$k$12 3456789
$\chi^S_{k}$106.498.63107.32122.53143.15169.05200.24236.80278.76
$\chi^H_{k}$186.3796.7392.57105.46127.03155.24189.40229.24274.64
$k$12 3456789
$\chi^S_{k}$106.498.63107.32122.53143.15169.05200.24236.80278.76
$\chi^H_{k}$186.3796.7392.57105.46127.03155.24189.40229.24274.64
Table 4.  Stable wave mode numbers and the corresponding bifurcation values $\chi_0$ for different interval lengthes, where system parameters are chosen to be the same as those in Table 3. We see that the threshold value $\chi_0$ is always achieved at the Hopf bifurcation point $\chi^H_{k_0}$
Interval length $L$23456789
$k_0$12345567
$\chi_0=\chi^H_{k_0}$97.6892.1397.6891.4992.1392.5791.1592.13
Interval length $L$1011121314151617
$k_0$89101112131415
$\chi_0=\chi^H_{k_0}$91.591.291.1391.2191.3091.4991.1591.40
Interval length $L$23456789
$k_0$12345567
$\chi_0=\chi^H_{k_0}$97.6892.1397.6891.4992.1392.5791.1592.13
Interval length $L$1011121314151617
$k_0$89101112131415
$\chi_0=\chi^H_{k_0}$91.591.291.1391.2191.3091.4991.1591.40
[1]

Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks & Heterogeneous Media, 2008, 3 (4) : 863-879. doi: 10.3934/nhm.2008.3.863

[2]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

[3]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

[4]

Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035

[5]

Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure & Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021

[6]

Henri Berestycki, Alessandro Zilio. Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7141-7162. doi: 10.3934/dcds.2019299

[7]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[8]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[9]

Meng Fan, Qian Wang. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 563-574. doi: 10.3934/dcdsb.2004.4.563

[10]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[11]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

[12]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[13]

Meng Zhao, Wan-Tong Li, Jia-Feng Cao. A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3295-3316. doi: 10.3934/dcdsb.2017138

[14]

Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021

[15]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[16]

Leonid Braverman, Elena Braverman. Stability analysis and bifurcations in a diffusive predator-prey system. Conference Publications, 2009, 2009 (Special) : 92-100. doi: 10.3934/proc.2009.2009.92

[17]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[18]

Zhicheng Wang, Jun Wu. Existence of positive periodic solutions for delayed ratio-dependent predator-prey system with stocking. Communications on Pure & Applied Analysis, 2006, 5 (3) : 423-433. doi: 10.3934/cpaa.2006.5.423

[19]

Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701

[20]

Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations & Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (56)
  • HTML views (24)
  • Cited by (2)

Other articles
by authors

[Back to Top]