January  2017, 37(1): 575-590. doi: 10.3934/dcds.2017023

The attractors for 2nd-order stochastic delay lattice systems

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

Department of Mathematics, Henan Normal University, Xinxiang 453007, China

Received  February 2016 Revised  September 2016 Published  November 2016

Fund Project: This work is supported by NSFC (Grant Nos. 11571128,11601133)

This paper deals with the long-time dynamical behavior of a classof 2nd-order stochastic delay lattice systems. It is shown under thedissipative and sublinear growth conditions that such a systempossesses a compact global random attractor within the set oftempered random bounded sets. A numerical example is given toillustrate the obtained theoretical result.

Citation: Chengjian Zhang, Lu Zhao. The attractors for 2nd-order stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 575-590. doi: 10.3934/dcds.2017023
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

J. BanCh. HsuY. Lin and T. Yang, Pullback and forward attractors for dissipative lattice dynamical systems with additive noises, Dyn. Syst., 24 (2009), 139-155. doi: 10.1080/14689360802508777. Google Scholar

[3]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21. doi: 10.1142/S0219493706001621. Google Scholar

[4]

P.W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Int. J. Bifurcat. Chaos, 11 (2001), 143-153. doi: 10.1142/S0218127401002031. Google Scholar

[5]

T. CaraballoP.E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423. doi: 10.1142/S0219493704001139. Google Scholar

[6]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335. doi: 10.1007/s11464-008-0028-7. Google Scholar

[7]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-lipschitz nonlinearity, J. Differ. Equ. Appl., 17 (2011), 161-184. doi: 10.1080/10236198.2010.549010. Google Scholar

[8]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-lipschitz nonlinearities, J. Differ. Equ., 253 (2012), 667-693. doi: 10.1016/j.jde.2012.03.020. Google Scholar

[9]

T. CaraballoF. Morillas and J. Valero, On differential equations with delay in banach spaces and attractors for retarded lattice dynamical systems, Discrete Cont. Dyn. Syst. Ser. A, 34 (2014), 51-77. doi: 10.3934/dcds.2014.34.51. Google Scholar

[10]

T. Caraballo and J. Real, Attractors for 2d-Navier-Stokes models with delays, J. Differ. Equ., 205 (2004), 271-297. doi: 10.1016/j.jde.2004.04.012. Google Scholar

[11]

X. Ding and J. Jiang, Random attractors for stochastic retarded lattice dynamical systems, Abstr. Appl. Analy. , 2012 (2012), Art. ID 409282, 27 pp. Google Scholar

[12]

X. Han, Random attractors for stochastic sine-gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 376 (2011), 481-493. doi: 10.1016/j.jmaa.2010.11.032. Google Scholar

[13]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differ. Equ., 250 (2011), 1235-1266. doi: 10.1016/j.jde.2010.10.018. Google Scholar

[14]

X. Han, Random attractors for second order stochastic lattice dynamical systems with multiplicative noise in weighted spaces Stoch. Dyn., 12(2012), 1150024, 20pp. doi: 10.1142/S0219493711500249. Google Scholar

[15]

D. LiC. Zhang and W. Wang, Long time behavior of non-Fickian delay reaction-diffusion equations, Nonlinear Anal.: RWA, 13 (2012), 1401-1415. doi: 10.1016/j.nonrwa.2011.11.005. Google Scholar

[16]

Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems, Chaos Solitons Fractals, 27 (2006), 1080-1090. doi: 10.1016/j.chaos.2005.04.089. Google Scholar

[17]

J. Mallet-Paret and G.R. Sell, Systems of differential delay equations: Floquet multipliers and discrete lyapunov functions, J. Differ. Equ., 125 (1996), 385-440. doi: 10.1006/jdeq.1996.0036. Google Scholar

[18]

B. Wang, Dynamics of systems on infinite lattices, J. Differ. Equ., 221 (2006), 224-245. doi: 10.1016/j.jde.2005.01.003. Google Scholar

[19]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136. doi: 10.1016/j.jmaa.2006.08.070. Google Scholar

[20]

X. WangS. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal.: TMA, 72 (2010), 483-494. doi: 10.1016/j.na.2009.06.094. Google Scholar

[21]

L. Xu and W. Yan, Stochastic Fitzhugh-Nagumo systems with delay, Taiwan. J. Math., 16 (2012), 1079-1103. Google Scholar

[22]

W. Yan, Y. Li and S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems J. Math. Phys., 51(2010), 032702, 17pp. doi: 10.1063/1.3319566. Google Scholar

[23]

C. Zhang and S. Li, Dissipativity and exponentially asymptotic stability of the solutions for nonlinear neutral functional-differential equations, Appl. Math. comput., 119 (2001), 109-115. doi: 10.1016/S0096-3003(99)00264-7. Google Scholar

[24]

L. ZhaoC. Zhang and D. Li, Global attractor for a class of retarded lattice dynamical systems, J. Math. Anal. Appl., 425 (2015), 178-193. doi: 10.1016/j.jmaa.2014.12.026. Google Scholar

[25]

C. Zhao and S. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 354 (2009), 78-95. doi: 10.1016/j.jmaa.2008.12.036. Google Scholar

[26]

C. Zhao and S. Zhou, Attractors of retarded first order lattice systems, Nonlinearity, 20 (2007), 1987-2006. doi: 10.1088/0951-7715/20/8/010. Google Scholar

[27]

C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Discrete Cont. Dyn. Syst. Ser. A, 21 (2008), 643-663. doi: 10.3934/dcds.2008.21.643. Google Scholar

[28]

X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 763-785. doi: 10.3934/dcdsb.2008.9.763. Google Scholar

[29]

C. ZhaoS. Zhou and W. Wang, Compact kernel sections for lattice systems with delays, Nonlinear Anal.: TMA, 70 (2009), 1330-1348. doi: 10.1016/j.na.2008.02.015. Google Scholar

[30]

S. Zhou, Attractors for second order lattice dynamical systems, J. Differ. Equ., 179 (2002), 605-624. doi: 10.1006/jdeq.2001.4032. Google Scholar

[31]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differ. Equ., 224 (2006), 172-204. doi: 10.1016/j.jde.2005.06.024. Google Scholar

[32]

S. ZhouC. Zhao and X. Liao, Compact uniform attractors for dissipative non-autonomous lattice dynamical systems, Commun. Pur. Appl. Anal., 6 (2007), 1087-1111. doi: 10.3934/cpaa.2007.6.1087. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

J. BanCh. HsuY. Lin and T. Yang, Pullback and forward attractors for dissipative lattice dynamical systems with additive noises, Dyn. Syst., 24 (2009), 139-155. doi: 10.1080/14689360802508777. Google Scholar

[3]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21. doi: 10.1142/S0219493706001621. Google Scholar

[4]

P.W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Int. J. Bifurcat. Chaos, 11 (2001), 143-153. doi: 10.1142/S0218127401002031. Google Scholar

[5]

T. CaraballoP.E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423. doi: 10.1142/S0219493704001139. Google Scholar

[6]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335. doi: 10.1007/s11464-008-0028-7. Google Scholar

[7]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-lipschitz nonlinearity, J. Differ. Equ. Appl., 17 (2011), 161-184. doi: 10.1080/10236198.2010.549010. Google Scholar

[8]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-lipschitz nonlinearities, J. Differ. Equ., 253 (2012), 667-693. doi: 10.1016/j.jde.2012.03.020. Google Scholar

[9]

T. CaraballoF. Morillas and J. Valero, On differential equations with delay in banach spaces and attractors for retarded lattice dynamical systems, Discrete Cont. Dyn. Syst. Ser. A, 34 (2014), 51-77. doi: 10.3934/dcds.2014.34.51. Google Scholar

[10]

T. Caraballo and J. Real, Attractors for 2d-Navier-Stokes models with delays, J. Differ. Equ., 205 (2004), 271-297. doi: 10.1016/j.jde.2004.04.012. Google Scholar

[11]

X. Ding and J. Jiang, Random attractors for stochastic retarded lattice dynamical systems, Abstr. Appl. Analy. , 2012 (2012), Art. ID 409282, 27 pp. Google Scholar

[12]

X. Han, Random attractors for stochastic sine-gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 376 (2011), 481-493. doi: 10.1016/j.jmaa.2010.11.032. Google Scholar

[13]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differ. Equ., 250 (2011), 1235-1266. doi: 10.1016/j.jde.2010.10.018. Google Scholar

[14]

X. Han, Random attractors for second order stochastic lattice dynamical systems with multiplicative noise in weighted spaces Stoch. Dyn., 12(2012), 1150024, 20pp. doi: 10.1142/S0219493711500249. Google Scholar

[15]

D. LiC. Zhang and W. Wang, Long time behavior of non-Fickian delay reaction-diffusion equations, Nonlinear Anal.: RWA, 13 (2012), 1401-1415. doi: 10.1016/j.nonrwa.2011.11.005. Google Scholar

[16]

Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems, Chaos Solitons Fractals, 27 (2006), 1080-1090. doi: 10.1016/j.chaos.2005.04.089. Google Scholar

[17]

J. Mallet-Paret and G.R. Sell, Systems of differential delay equations: Floquet multipliers and discrete lyapunov functions, J. Differ. Equ., 125 (1996), 385-440. doi: 10.1006/jdeq.1996.0036. Google Scholar

[18]

B. Wang, Dynamics of systems on infinite lattices, J. Differ. Equ., 221 (2006), 224-245. doi: 10.1016/j.jde.2005.01.003. Google Scholar

[19]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136. doi: 10.1016/j.jmaa.2006.08.070. Google Scholar

[20]

X. WangS. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal.: TMA, 72 (2010), 483-494. doi: 10.1016/j.na.2009.06.094. Google Scholar

[21]

L. Xu and W. Yan, Stochastic Fitzhugh-Nagumo systems with delay, Taiwan. J. Math., 16 (2012), 1079-1103. Google Scholar

[22]

W. Yan, Y. Li and S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems J. Math. Phys., 51(2010), 032702, 17pp. doi: 10.1063/1.3319566. Google Scholar

[23]

C. Zhang and S. Li, Dissipativity and exponentially asymptotic stability of the solutions for nonlinear neutral functional-differential equations, Appl. Math. comput., 119 (2001), 109-115. doi: 10.1016/S0096-3003(99)00264-7. Google Scholar

[24]

L. ZhaoC. Zhang and D. Li, Global attractor for a class of retarded lattice dynamical systems, J. Math. Anal. Appl., 425 (2015), 178-193. doi: 10.1016/j.jmaa.2014.12.026. Google Scholar

[25]

C. Zhao and S. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 354 (2009), 78-95. doi: 10.1016/j.jmaa.2008.12.036. Google Scholar

[26]

C. Zhao and S. Zhou, Attractors of retarded first order lattice systems, Nonlinearity, 20 (2007), 1987-2006. doi: 10.1088/0951-7715/20/8/010. Google Scholar

[27]

C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Discrete Cont. Dyn. Syst. Ser. A, 21 (2008), 643-663. doi: 10.3934/dcds.2008.21.643. Google Scholar

[28]

X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 763-785. doi: 10.3934/dcdsb.2008.9.763. Google Scholar

[29]

C. ZhaoS. Zhou and W. Wang, Compact kernel sections for lattice systems with delays, Nonlinear Anal.: TMA, 70 (2009), 1330-1348. doi: 10.1016/j.na.2008.02.015. Google Scholar

[30]

S. Zhou, Attractors for second order lattice dynamical systems, J. Differ. Equ., 179 (2002), 605-624. doi: 10.1006/jdeq.2001.4032. Google Scholar

[31]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differ. Equ., 224 (2006), 172-204. doi: 10.1016/j.jde.2005.06.024. Google Scholar

[32]

S. ZhouC. Zhao and X. Liao, Compact uniform attractors for dissipative non-autonomous lattice dynamical systems, Commun. Pur. Appl. Anal., 6 (2007), 1087-1111. doi: 10.3934/cpaa.2007.6.1087. Google Scholar

Figure 1.  Numerical simulation for the equation (5.1) with $u_i(t)=\frac{\partial}{\partial t}u_i(t)=\exp(t)\cos(\frac{i\pi }{50})$
Figure 2.  Numerical simulation for the equation (5.1) with $u_i(t)=\frac{\partial}{\partial t}u_i(t)=\exp(t)\sin(\frac{i\pi }{50})$
Figure 3.  Numerical solutions with different initial conditions at time $t=10$
[1]

Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873

[2]

Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081

[3]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[4]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[5]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[6]

Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure & Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038

[7]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[8]

Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557

[9]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[10]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[11]

Xinfu Chen, Carey Caginalp, Jianghao Hao, Yajing Zhang. Effects of white noise in multistable dynamics. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1805-1825. doi: 10.3934/dcdsb.2013.18.1805

[12]

Marcio Antonio Jorge da Silva, Vando Narciso. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*. Evolution Equations & Control Theory, 2017, 6 (3) : 437-470. doi: 10.3934/eect.2017023

[13]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure & Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[14]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[15]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[16]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

[17]

C. I. Christov, M. D. Todorov. Investigation of the long-time evolution of localized solutions of a dispersive wave system. Conference Publications, 2013, 2013 (special) : 139-148. doi: 10.3934/proc.2013.2013.139

[18]

Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. Communications on Pure & Applied Analysis, 2020, 19 (2) : 811-834. doi: 10.3934/cpaa.2020038

[19]

Angelo Favini, Georgy A. Sviridyuk, Alyona A. Zamyshlyaeva. One Class of Sobolev Type Equations of Higher Order with Additive "White Noise". Communications on Pure & Applied Analysis, 2016, 15 (1) : 185-196. doi: 10.3934/cpaa.2016.15.185

[20]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (26)
  • HTML views (2)
  • Cited by (0)

Other articles
by authors

[Back to Top]