[1]
|
A. Bahrami and A. H. Nayfeh, Nonlinear dynamics of tapping mode atomic force microscopy in the bistable phase, Nonlinear Sci Numer Simulat, 18 (2013), 799-810.
doi: 10.1016/j.cnsns.2012.08.021.
|
[2]
|
M. Belhaq, New analytical technique for predicting homoclinic bifurcations in autonomous dynamical systems, Mech Res Commun, 25 (1998), 49-58.
doi: 10.1016/S0093-6413(98)00006-8.
|
[3]
|
M. Belhaq and A. Fahsi, Homoclinic bifurcations in self-excited oscillators, Mech Res Commun, 23 (1996), 381-386.
doi: 10.1016/0093-6413(96)00035-3.
|
[4]
|
M. Belhaq, A. Fashi and F. Lakrad, Predicting homoclinic bifurcations in planar autonomous systems, Nonlinear Dyn, 18 (1999), 303-310.
doi: 10.1023/A:1026428718802.
|
[5]
|
M. Belhaq, B. Fiedler and F. Lakrad, Homoclinic connections in strongly self-excited nonlinear oscillators: the Melnikov function and the elliptic Lindstedt-Poincare method, Nonlinear Dyn, 23 (2000), 67-86.
doi: 10.1023/A:1008316010341.
|
[6]
|
Y. Y. Cao, K. W. Chung and J. Xu, A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method, Nonlinear Dyn, 64 (2011), 221-236.
doi: 10.1007/s11071-011-9990-9.
|
[7]
|
Y. Y. Chen and S. H. Chen, Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method, Nonlinear Dyn, 58 (2009), 417-429.
doi: 10.1007/s11071-009-9489-9.
|
[8]
|
Y. Y. Chen, S. H. Chen and K. Y. Sze, A hyperbolic Lindstedt-poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators, Acta Mech Sinica, 25 (2009), 721-729.
doi: 10.1007/s10409-009-0276-0.
|
[9]
|
Y. Y. Chen, L. W. Yan, K. Y. Sze and S. H. Chen, Generalized hyperbolic perturbation method for homoclinic solutions of strongly nonlinear autonomous systems, Appl Math Mech Engl Ed, 33 (2012), 1137-1152.
doi: 10.1007/s10483-012-1611-6.
|
[10]
|
A. G. Davod, D. D. Ganji, R. Azami and H. Babazadeh, Application of improved amplitude frequency formulation to nonlinear differential equation of motion equations, Mod Phys Lett B, 23 (2009), 3427-3440.
doi: 10.1142/S0217984909021466.
|
[11]
|
H. Ding and L. Q. Chen, Galerkin methods for natural frequencies of high-speed axially moving beams, J Sound Vib, 329 (2010), 3484-3494.
doi: 10.1016/j.jsv.2010.03.005.
|
[12]
|
H. Ding, L. Q. Chen and S. P. Yang, Convergence of galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load, J Sound Vib, 331 (2012), 2426-2442.
doi: 10.1016/j.jsv.2011.12.036.
|
[13]
|
J. J. Feng, Q. C. Zhang and W. Wang, Chaos of several typical asymmetric systems, Chaos Solitons Fract, 45 (2012), 950-958.
doi: 10.1016/j.chaos.2012.02.022.
|
[14]
|
J. H. He, Preliminary report on the energy balance for nonlinear oscillations, Mech Res Commun, 29 (2002), 107-111.
|
[15]
|
J. H. He, Homotopy perturbation technique, Comput Methods Appl Mech Eng, 178 (1999), 257-262.
doi: 10.1016/S0045-7825(99)00018-3.
|
[16]
|
Y. Khan and A. Mirzabeigy, Improved accuracy of He's energy balance method for analysis of conservative nonlinear oscillator, Neural Comput Appl, 25 (2014), 889-895.
doi: 10.1007/s00521-014-1576-2.
|
[17]
|
F. N. Mayoof and M. A. Hawwa, Chaotic behavior of a curved carbon nanotube under harmonic excitation, Chaos Solitons Fract, 42 (2009), 1860-1867.
doi: 10.1016/j.chaos.2009.03.104.
|
[18]
|
Y. V. Mikhlin, Analytical construction of homoclinic orbits of two-and three-dimensional dynamical systems, J Vib Shock, 230 (2000), 971-983.
doi: 10.1006/jsvi.1999.2669.
|
[19]
|
V. K. Melnikov, On the stability of the center for some periodic perturbations, Trans Moscow Math Soc, 12 (1963), 3-52.
|
[20]
|
A. H. Nayfeh, H. M. Ouakad, F. Najar, S. Choura and E. M. Abdel-Rahman, Nonlinear Dynamics of a Resonant Gas Sensor, Nonlinear Dyn, 59 (2010), 607-618.
doi: 10.1007/s11071-009-9567-z.
|
[21]
|
A. F. Vakakis and M. F. A. Azeez, Analytic approximation of the homoclinic orbits of the Lorenz system at σ = 10, b = 8/3 and ρ = 13.926, Nonlinear Dyn, 15 (1998), 245-257.
doi: 10.1023/A:1008202529152.
|
[22]
|
Q. C. Zhang, W. Wang and X. J. He, The application of the undetermined fundamental frequency for analyzing the critical value of chaos, Acta Phys Sin, 58 (2009), 5162-5168.
|
[23]
|
Q. C. Zhang, W. Wang and W. Y. Li, Heteroclinic bifurcation of strongly nonlinear oscillator, Chin Phys Lett, 25 (2008), 1905-1907.
|
[24]
|
D. Younesian, H. Askari, Z. Saadatnia and Y. M. Kalami, Frequency analysis of strongly nonlinear generalized Duffing oscillators using He's frequency-amplitude formulation and He's energy balance method, Comput Math Appl, 59 (2010), 3222-3228.
doi: 10.1016/j.camwa.2010.03.013.
|