\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bound state solutions of Schrödinger-Poisson system with critical exponent

  •  

Research supported by the National Natural Science Foundation of China (No. 11571187)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider the following Schrödinger-Poisson problem

    $\tag{P}\label{0.1} \begin{cases}- Δ u+V(x)u+K(x)φ u=|u|^{2^*-2}u, &x∈ \mathbb{R}^3,\\-Δ φ=K(x)u^2,&x∈ \mathbb{R}^3,\end{cases}$

    where $2^*=6 $ is the critical exponent in $\mathbb R^3$, $ K∈ L^{\frac{1}{2}}(\mathbb{R}^3)$ and $V∈ L^{\frac{3}{2}}(\mathbb{R}^3)$ are given nonnegative functions. When $|V|_{\frac{3}{2}}+|K|_{\frac{1}{2}}$ is suitable small, we prove that problem (P) has at least one bound state solution via a linking theorem.

    Mathematics Subject Classification: Primary:35J20;Secondary:35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   A. Ambrosetti , On Schrödinger-Poisson systems, Milan J. Math., 76 (2008) , 257-274.  doi: 10.1007/s00032-008-0094-z.
      A. Ambrosetti  and  D. Ruiz , Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008) , 391-404.  doi: 10.1142/S021919970800282X.
      A. Azzollini  and  A. Pomponio , Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anual. Appl., 345 (2008) , 90-108.  doi: 10.1016/j.jmaa.2008.03.057.
      V. Benci  and  D. Fortunato , Some compact embedding theorems for weighted Sobolev spaces, Boll. Un. Mat. Ital. B (5), 13 (1976) , 832-843. 
      V. Benci  and  C. Cerami , Existence of positive solutions of the equation $-Δ u+a(x)u=u^{(N+2)/(N-2)}$ in $\mathbb R^3$, J. Funct. Anal., 88 (1990) , 90-117.  doi: 10.1016/0022-1236(90)90120-A.
      V. Benci  and  D. Fortunato , An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998) , 283-293. 
      V. Benci  and  D. Fortunato , Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002) , 409-420.  doi: 10.1142/S0129055X02001168.
      H. Brezis, Analyse Fonctionnelle, Masson, Parias, 1983.
      G. M. Coclite , A multiplicity result for the Schrödinger-Maxwell equations with negative potential, Ann. Polon. Math., 79 (2002) , 21-30. 
      T. D'Aprile  and  D. Mugnai , Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004) , 307-322. 
      T. D'Aprile  and  J. C. Wei , On bound states concentrating on spheres for the Maxwell-Schrödinger equations, SIAM J. Math. Anal., 37 (2005) , 321-342.  doi: 10.1137/S0036141004442793.
      X. M. He and W. M. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth J. Math. Phys. 53 (2012), 023702, 19pp. doi: 10.1063/1.3683156.
      I. Ianni  and  G. Vaira , Solutions of the Schrödinger-Poisson problem concentrating on spheres, Part I: Necessary condition, Math. Models Methods Appl. Sci., 19 (2009) , 707-720.  doi: 10.1142/S0218202509003589.
      I. Ianni , Solutions of the Schrödinger-Poisson problem concentrating on spheres, Part II: Existence, Math. Models Methods Appl. Sci., 19 (2009) , 877-910.  doi: 10.1142/S0218202509003656.
      Y. S. Jiang  and  H. S. Zhou , Schrödinger-Poisson system with steep potential well, J. Differential. Equations., 251 (2011) , 582-608.  doi: 10.1016/j.jde.2011.05.006.
      G. B. Li, S. J. Peng and C. H. Wang, Multi-bump solutions for the nonlinear Schrödinger-Poisson system J. Maht. phys. 52 (2011), 053505, 19pp. doi: 10.1063/1.3585657.
      P. L. Lions , The concentration-compactness method in the calculus of variations. The locally compact case, parts 1 and 2, Ann. Inst. H. Poincaré Anual. Non Linéair, 1 (1984) , 109-145,223-283. 
      Z. S. Liu  and  S. J. Guo , On ground state solutions for the Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 412 (2014) , 435-448.  doi: 10.1016/j.jmaa.2013.10.066.
      D. Ruiz , Semiclassical states for coupled Schrödinger-Maxwell equations: Concentration around a sphere, Math. Models Methods Appl. Sci., 15 (2005) , 141-164.  doi: 10.1142/S0218202505003939.
      D. Ruiz  and  G. Vaira , Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential, Rev. Mat. Iberoam., 27 (2011) , 253-271.  doi: 10.4171/RMI/635.
      A. Salvatore , Multiple solitary waves for a non-homogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Adv. Nonlinear strud., 6 (2006) , 157-169.  doi: 10.1515/ans-2006-0203.
      M. Struwe , A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984) , 511-517.  doi: 10.1007/BF01174186.
      J. Wang , J. X. Xu , F. B. Zhang  and  X. M. Chen , Existence of multi-bump solutions for a semilinear Schrödinger-Poisson system, Nonlinearity, 26 (2013) , 1377-1399.  doi: 10.1088/0951-7715/26/5/1377.
      M. Willem, Analyse Harmomque Réelle, Hermann, Parias, 1995.
      M. Willem, Minimax Theorems Birkhäuser, Boston, Basel, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.
      Z. P. Wang  and  H. S. Zhou , Positive solutions for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^3 $, Discrete Contin. Dyn. Syst., 18 (2007) , 809-816.  doi: 10.3934/dcds.2007.18.809.
      J. Zhang , On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth, Nonlinea Anal., 75 (2012) , 6391-6401.  doi: 10.1016/j.na.2012.07.008.
      J. Zhang , On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 428 (2015) , 387-404.  doi: 10.1016/j.jmaa.2015.03.032.
      L. G. Zhao , H. Liu  and  F. K. Zhao , Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential. Equations, 255 (2013) , 1-23.  doi: 10.1016/j.jde.2013.03.005.
      L. G. Zhao  and  F. K. Zhao , Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009) , 2150-2164.  doi: 10.1016/j.na.2008.02.116.
      L. G. Zhao  and  F. K. Zhao , On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anual. Appl., 346 (2008) , 155-169.  doi: 10.1016/j.jmaa.2008.04.053.
  • 加载中
SHARE

Article Metrics

HTML views(185) PDF downloads(400) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return